
1/12

Antonio Parata November 10, 2021

Ploutus ATM Malware
crowdstrike.com/blog/ploutus-atm-malware-deobfuscation-case-study

One of the most tedious tasks in malware analysis is to get rid of the obfuscated code.
Nowadays, almost every malware uses obfuscation to hinder the analysis and try to evade
detection. In some cases, the obfuscation is not complex and is trivial to remove. An
example of a trivial technique is the encryption of the strings with a hardcoded key. In other
cases, the obfuscation can be very complex to remove, and time spent on analysis might
easily become unsustainable. An example of an advanced obfuscation technique is the
usage of a software Virtual Machine or Control-Flow Obfuscation (an example of a Control-
Flow Obfuscation technique was discussed in another post analyzing the Maze ransomware
obfuscation).

The decision to adopt a specific technique is mostly driven by weighing the complexity of the
implementation versus its effectiveness. This trade-off might assume a very different weight
according to the technology used to develop the malware and the available tools used to
analyze the malware binary. Two relevant examples, where this trade-off assumes very
different values, are the analysis of an unmanaged binary versus the analysis of a managed

https://www.crowdstrike.com/blog/ploutus-atm-malware-deobfuscation-case-study
https://www.crowdstrike.com/cybersecurity-101/malware/malware-analysis/
https://www.crowdstrike.com/cybersecurity-101/malware/
https://www.crowdstrike.com/blog/maze-ransomware-deobfuscation/

2/12

binary. An unmanaged binary is a program written in a language, such as C/C++, that is
compiled directly to native code. Conversely, a managed binary is written in a high-level
language such as C# or F#, and compiles to an intermediate language.

An advantage of unmanaged programs over managed programs is that the latter are easier
to port to another system. A clear example of this is the .NET Core technology, which
supports the execution of the same binary on different operating systems (OSs). However,
this advantage has a drawback from a security point of view. In order to execute the binary
on a different OS, it is necessary to include, inside the file, a conspicuous amount of
metadata that describes how the binary is structured. These metadata are at the base of the
reflection concept, a characteristic supported by programming language such as C#, F# or
Java.

Reflection allows a program to query the metadata of a managed binary in order to extract
information related to the program structure. An example of usage of reflection is to
dynamically resolve a method implemented in the examined binary. Many tools leverage the
reflection concept, and the abundance of metadata information, to decompile managed
binaries. The decompilation output almost resembles the original source code. An example,
and first of such decompilers, is .NET Reflector. Thanks to the availability of these tools, the
analysis of managed binaries became very easy. With the proliferation of decompilers,
another type of software started to spread: managed code obfuscators. These tools are
created with the intent to protect intellectual properties (such as proprietary algorithms).

As a consequence, malware developers took advantage of obfuscators and started to
obfuscate the malware code, making the decompiled code very hard to read or even
impossible to obtain. Ploutus malware protects its code with a commercial obfuscator named
.NET Reactor.

Ploutus is a malware family that targets ATMs and is able to perform ATM jackpotting — an
attack that causes the ATM to dispense all bills stored within the ATM cassettes. Ploutus was
first discovered in 2013 in Mexico. In March 2021, a new version was identified targeting
ATMs in the Latin American (LATAM) region. The malware is implemented using the
Microsoft .NET framework, a technology that allows for effective code decompilation.

The deployment of the malware is typically achieved by connecting an external device to the
ATM to trigger execution of the malware. Once executed, Ploutus interacts with the operator
using the function keys and mouse. The interaction with the mouse was likely introduced to
allow the operator to easily interact with ATMs supporting a touch screen. The
communication with the ATM is performed by using an XFS (extensions for financial
services) middleware such as KAL Kalignite.

The supported UI is very minimal; this choice was likely adopted to allow the malware to run
on a wide variety of ATM devices. An example of UI is shown in Figure 1. This screen is
displayed after the operator taps five times on each corner of the screen.

https://www.red-gate.com/products/dotnet-development/reflector/
https://www.eziriz.com/dotnet_reactor.htm
https://www.metabaseq.com/recursos/ploutus-is-back-targeting-itautec-atms-in-latin-america

3/12

Figure 1. Ploutus menu activated by tapping on an ATM touch screen

Ploutus accepts commands from the keypad too. An example of a command used to start
the Jackpotting attack is the sequence F8F1F2F3F4 .

Historically, the Ploutus binary is strongly obfuscated, making analysis difficult. In particular,
Ploutus uses multiple obfuscation techniques, such as string encryption, function name
obfuscation, methods proxying, control-flow-graph (CFG) obfuscation and method
encryption.

Ploutus Obfuscation

As mentioned, the obfuscation techniques implemented by Ploutus are the result of the
usage of the commercial obfuscator .NET Reactor. Some of these techniques are easy to
deobfuscate, such as the string encryption; others, instead, might significantly slow down the
analysis process. Control flow obfuscation and method proxying are two examples of
techniques that slow down the debugging of malware. These techniques hide relevant
information, such as the name and signature of the function called (this information is
generally available in the debugger view), or they make the debugging session much harder
by making the execution flow not linear and forcing the analyst to execute a lot of jump
instructions.

Of the mentioned techniques, method body encryption is the one that makes analysis most
difficult. The concept is based on encrypting the method body with a fake or empty one, and
only when the method is compiled to native code, the real method body is passed to the
compiler instead of the fake one. The impact of this technique on the analysis process is to
be unable to see the real method instructions and, as a consequence, to be unable to
correctly debug the process in a managed debugger such as dnSpy. The .NET Reactor
website mentions the encryption of the method body, using a feature named Necrobit. The
next section provides an in-depth analysis of this obfuscation technique.

Method Body Encryption Obfuscation

https://github.com/dnSpy/dnSpy
https://www.eziriz.com/reactor_features.htm

4/12

As described, the method’s fake body is replaced with the real one at execution time. This is
achieved by hooking the compileMethod function, which is in charge of compiling the
Microsoft Intermediate Language (MSIL) code to native code. MSIL is the standardized
intermediate language used by the .NET framework. An example of MSIL is shown in Figure
2.

IL_0000: ldarg.0
IL_0001: call instance int32 System.Random::InternalSample()
IL_0006: ret

Figure 2. Example of MSIL code

The compileMethod method is not directly exported by the .NET framework and needs to
be resolved by calling the exported function getJit . This function is exported by the
mscorjit.dll library (or by the clrjit.dll in the most recent .NET framework

versions). Once executed, the function returns a pointer to a ICorJitCompiler class — a
virtual table whose first method is the compileMethod . Microsoft is well aware of
obfuscators that use this technique to protect the code, as also reported in the function
comment shown in Figure 3 (the comment was removed in the latest .NET source code).

// compileMethod is the main routine to ask the JIT Compiler to create native
code for a method. The
// method to be compiled is passed in the 'info' parameter, and the
code:ICorJitInfo is used to allow the
// JIT to resolve tokens, and make any other callbacks needed to create the
code. nativeEntry, and
// nativeSizeOfCode are just for convenience because the JIT asks the EE for
the memory to emit code into
// (see code:ICorJitInfo.allocMem), so really the EE already knows where the
method starts and how big
// it is (in fact, it could be in more than one chunk).
//
// * In the 32 bit jit this is implemented by code:CILJit.compileMethod
// * For the 64 bit jit this is implemented by code:PreJit.compileMethod
//
// Note: Obfuscators that are hacking the JIT depend on this method having
__stdcall calling convention
virtual CorJitResult __stdcall compileMethod (
 ICorJitInfo *comp, /* IN */
 struct CORINFO_METHOD_INFO *info, /* IN */
 unsigned /* code:CorJitFlag */ flags, /* IN */
 BYTE **nativeEntry, /* OUT */
 ULONG *nativeSizeOfCode /* OUT */
) = 0;

Figure 3. compileMethod function definition

In order for this concept to work, the obfuscator creates a static constructor to apply the hook
(or modifies the existing constructor) for each class containing obfuscated methods. This
additional code ensures that everything works as expected, since the static constructor is

5/12

executed before any method implemented inside the class is compiled.

At execution time, the compileMethod hook uses the info argument to replace the fake
MSIL code with the real code. The info field is of type CORINFO_METHOD_INFO , described
by the structure reported in Figure 4.

struct CORINFO_METHOD_INFO
{
 CORINFO_METHOD_HANDLE ftn;
 CORINFO_MODULE_HANDLE scope;
 uint8_t * ILCode;
 unsigned ILCodeSize;
 unsigned maxStack;
 unsigned EHcount;
 CorInfoOptions options;
 CorInfoRegionKind regionKind;
 CORINFO_SIG_INFO args;
 CORINFO_SIG_INFO locals;
};

Figure 4. CORINFO_METHOD_INFO structure

The malware replaces, in the compileMethod hook, the content of the fields info-
>ILCode and info->ILCodeSize with the real values. Interestingly, this process causes
the debugger to behave in an unexpected way and, in some cases, to lose the debugging
session.

The obfuscation technique stores the real method body inside a .NET resource in an
encrypted format. The encryption algorithm is not complex, but the addition of other
obfuscation techniques — in primis the Control-Flow Obfuscation — makes its analysis quite
hard. Its design is based primarily on XOR and ADD operations between a key and the blob
containing the encrypted methods body. The key is computed at runtime by XOR’ing two
arrays of bytes. The content of these two arrays is also computed at runtime in order to
conceal their content from static analysis. The method’s body decryption algorithm uses four
constants to modify the iteration key in the decryption loop. The value of these constants is
computed by applying a constant unfolding obfuscation technique. This concept is based on
decomposing a constant by using multiple arithmetic operations such as add, or, shift, and
eXclusive OR. These operations are executed at runtime to obtain the real constant values.

The values of the key and of the four constants vary among the identified samples.
Computing these values at runtime makes the creation of a static extractor more difficult,
since it is necessary to create an instruction emulator. An excerpt of code computing the four
constants is provided in Figure 5.

6/12

uint num37 = num32;
uint num38 = num32;
uint num39 = 1037012658U;
uint num40 = 443628764U;
uint num41 = 1523807635U;
uint num42 = 1126448412U;
uint num43 = num38;
uint num44 = 1126272645U;
num41 -= num40;
uint num45 = ((num39 >> 7) | (num39 << 25)) ^ num42; uint num46 = num45 & 252645135U;
num45 &= 4042322160U; num39 = (num45 >> 4) | (num46 << 4); ulong num47 = (ulong)
(1502774316U * num41); if (num47 == 0UL) { num47 -= 1UL; } num40 = (uint)((ulong)
(num40 * num40) % num47); if (num42 == 0.0) { num42 -= 1U; } uint num48 = (uint)
(1891538677.0 / num42 + num42); if ((short)num41 == 0) { num41 -= 1U; } num42 =
(uint)((uint)(num41 / (double)((short)num41)) - num48 + num41); uint num49 = num44 &
16711935U; uint num50 = num44 & 4278255360U; num49 = ((num49 >> 8) | (num50 << 8)) ^
num41;
num44 = (num44 << 12) | (num44 >> 20);
num43 ^= num43 >> 2;
num43 += num40;
num43 ^= num43 >> 9;
num43 += num42;
num43 ^= num43 << 21;
num43 += num44;
num43 = (((num39 << 13) - num41) ^ num42) + num43;
num32 = num37 + (uint)num43;
num2 = 269;

Figure 5. Constant unfolding code example

The highlighted code is the most relevant and shows the update of the interaction key
through a series of operations between the byte to decrypt (num43) and the four constants
(num40 , num42 , num44 , and a transient value computed from variables num39 , num41
and num42).

After this first layer of obfuscation is completed, an additional obfuscation layer is included.
This second layer is based on an additional loop with a step of eight bytes. In each iteration,
the first four bytes are XOR’ed with a static constant.

Once the content is decrypted, it is processed as two separate parts: the first contains the
real method headers, and the second contains the real method bodies (the content used by
the hook function as described above). The method header is a fundamental concept of the
.NET framework and contains, among other information, details on the exception handlers
used by the methods. If the information related to the exception handlers is ignored, the
program may crash at runtime due to an apparently unhandled exception.

To extract the exception handler information, it is necessary to know how the method header
is structured. The header can be of two types: a fat header or a tiny header. The exception
handler data is only present in methods with a fat header. On the contrary, when the method

7/12

does not have any exception handler, and its size is less than 64 bytes, a tiny header is
used. An example of the layout of the fat and tiny methods is shown in Figure 6.

Figure 6. Tiny method and fat method layout

Once the real method bodies and headers are obtained, it is possible to patch the binary with
the real content.

Implementing a Deobfuscator

8/12

This section describes an implementation of a deobfuscator that decrypts the real method
bodies and creates a new binary with the correct values. The implementation contains some
technical challenges that are the result of design choices taken by the obfuscation tool’s
developer. In particular, a clever choice was to use only local variables and to scatter the
decryption code among various instructions inside the static constructor, instead of calling a
function dedicated to the decryption. In the latter case, extracting the information needed for
the decryption would be a trivial task by using a managed debugger like dnSpy — it would be
enough to set a breakpoint on the decryption routine and read the values of its input
arguments. By using only local variables, it is not possible to apply this strategy, and we are
forced to extract the values manually or by creating a MSIL code emulator. Considering the
effort involved in creating an MSIL code emulator, the deobfuscator requires this information
as input values; it is the analyst’s duty to extract them.

The implementation uses the dnLib library to patch the original binary and create the
deobfuscated one. The code implements the decryption functions described above and then
patches the obfuscated methods by identifying them through their metadata tokens (a value
associated to each method and referenced by the .NET framework during the compilation
process). As a final step, the deobfuscator removes bad MSIL instructions that causes dnLib
to crash.

Deobfuscation Walkthrough

The accompanying code provides the fundamentals to perform a binary deobfuscation but
needs specific information in order to perform the deobfuscation. This information can be
obtained by debugging the code as demonstrated in this section.

To make this post practical, this section provides an example of dynamic analysis, with the
purpose of providing specific indication on how to identify the relevant code patterns that
contain the information needed for the deobfuscation. The information needed is the
following:

1. The key used to decrypt the method body. This information is an array of bytes and is
stored in an obfuscated format.

2. The XOR array used to deobfuscate the above key.
3. The values of the four constants used in the decryption of the method bodies.
4. An additional key used to decrypt the method headers.

The key used to decrypt the method bodies is XOR’ed with an array whose length is 16
bytes. By loading the malware binary in dnSpy and locating the static constructor (whose
name is .cctor) implementing the deobfuscation code, it is possible to identify the first
piece of information by searching for the pattern ^=. The interesting instructions are those
executing the XOR operation between two arrays. On each identified spot, a new breakpoint
is added. An example of such code is reported in Figure 7.

https://github.com/0xd4d/dnlib

9/12

array15[num53] ^= array5[num53];
num2 = 413;

Figure 7. Example of code used to extract the decryption method body array key

When the breakpoint hits, the values of the two arrays need to be extracted (before the XOR
operation). array15 contains the obfuscated key used to decrypt the method bodies, and
array5 is the byte array used to deobfuscate the key. For our case, the assumed values

are reported in Figure 8.

array15 0x19 0x10 0xC3 0x47
0x33 0x77 0x32 0x13

0xCC 0xFC 0x74 0xA6

0x87 0x5F 0xBD 0xCA

0x68 0xFC 0x5A 0xBA

0xD3 0x45 0x16 0xFA

0xC4 0x65 0xA2 0x57

0x5E 0xFE 0x23 0x01

array5 0x70 0x36 0xC5 0x87
0x86 0x91 0x3B 0xE7

0x33 0xCD 0xBA 0xA9

0x2F 0xB0 0xB4 0x24

Figure 8. Value of the keys used to decrypt the method bodies

The other information is extracted using a similar approach. In particular, the four constants
are identified by searching for the code pattern << 21 . An example of such a pattern is
shown in Figure 9.

num43 ^= num43 >> 2;
num43 += num40;
num43 ^= num43 >> 9;
num43 += num42;
num43 ^= num43 << 21;
num43 += num44;
num43 = (((num39 << 13) - num41) ^ num42) + num43;
num32 = num37 + (uint)num43;
num2 = 269;

Figure 9. Example of pattern used to extract the constant values

10/12

A breakpoint needs to be set on the last line in order to execute the code that computes the
constant values. From the debugger UI, it is possible to extract the values of the four
constants, which are stored in num40 , num42 , num44 , and the transient value obtained
from variables num39 , num41 and num42 . For our sample, the assumed values are
shown in Figure 10.

num40 0x78AFDD10

num42 0xFD3F1E37

num44 0x18E85432

<transient value> 0x99e0d97e

Figure 10. Values assumed by the constants used in the deobfuscation process

The final information is the one used to decrypt the method headers. The pattern to search
for is again ^=. This time the instruction to look for is a XOR operation with a hard-coded
constant. An example of such code is shown in Figure 11.

((long*)ptr)[(IntPtr)num33 * 8] ^= 849740904L;
num2 = 250;

For our sample, the assumed value is 0x32a60468 . With the collected information, it is
possible to run the deobfuscator. Figures 12 and 13 provide an example of deobfuscation
results. The obfuscated function code is shown in Figure 12. As can be noticed, the
decompiled function code is empty, and its MSIL code does not perform any meaningful
action.

11/12

Figure 12. Example of obfuscated code

Figure 13 shows the same function after the deobfuscation. The function code contains now
valid instructions, such as a Windows registry operation.

Figure 13. Example of deobfuscated code (Cklick to enlarge)

After removing this deobfuscation layer, it is possible to run additional deobfuscators, such
as de4dot, to further clean the binary.

Conclusion

As demonstrated throughout this post, Ploutus obfuscation represents a real challenge for
the analyst. The obfuscation of the method’s body can hinder both static and dynamic
analysis. Deobfuscating this technique requires a good understanding of the inner
functionality of the .NET framework and its core structures. Writing a full deobfuscator
requires a considerable amount of time, in particular due to some design choices adopted by
the developer (such as using only local variables without referencing external methods).
Nevertheless, it is possible to create a deobfuscator that takes in input information that can
be extracted by debugging the code, obtaining as a result a binary with the real method’s
body.

https://www.crowdstrike.com/wp-content/uploads/2021/11/Picture1-5.png
https://github.com/de4dot/de4dot

12/12

Additional Resources

Learn how CrowdStrike Falcon X combines automated analysis with human
intelligence, enabling security teams, regardless of size or skill, to get ahead of the
attacker’s next move.
Falcon X Premium adds threat intelligence reporting and research from CrowdStrike
experts — enabling you to get ahead of nation-state, eCrime and hacktivist attacks.
Falcon X Elite expands your team with access to an intelligence analyst to help defend
against threats targeting your organization.
Learn how to stop adversaries targeting your industry — schedule a free 1:1 intel
briefing with a CrowdStrike threat intelligence expert today.

https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/
https://www.crowdstrike.com/resources/data-sheets/falcon-x-premium/
https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/elite/
https://go.crowdstrike.com/threat-intelligence-briefing.html

