
1/9

November 9, 2021

Compromised Docker Hub Accounts Abused for
Cryptomining Linked to TeamTNT

trendmicro.com/en_us/research/21/k/compromised-docker-hub-accounts-abused-for-cryptomining-linked-t.html

Cloud

In October 2021, we observed threat actors targeting poorly configured servers with exposed
Docker REST APIs by spinning up containers from images that execute malicious scripts.

By: Trend Micro Research November 09, 2021 Read time: (words)

As a part of our threat research, we closely monitor actively exploited vulnerabilities and
misconfigurations. One such frequently abused misconfiguration is that of exposed Docker
REST APIs.

In October 2021, we observed threat actors targeting poorly configured servers with exposed
Docker REST APIs by spinning up containers from images that execute malicious scripts
that do the following:

1. Download or bundle Monero cryptocurrency coin miners
2. Perform container-to-host escape using well-known techniques
3. Perform internet-wide scans for exposed ports from compromised containers

https://www.trendmicro.com/en_us/research/21/k/compromised-docker-hub-accounts-abused-for-cryptomining-linked-t.html

2/9

Figure 1. Behavior of attacks targeting vulnerable Docker servers
We identified Docker Hub registry accounts that were either compromised or belong to
TeamTNT. These accounts were being used to host malicious images and were an active
part of botnets and malware campaigns that abused the Docker REST API. We have
reached out to Docker and the accounts in question have been removed.

In this blog, we discuss two such accounts that are being used to spread cryptocurrency
miners by abusing the Docker REST API.

Malicious script found in Docker images

3/9

Figures 2 and 3. Contents of Docker images
The images contain a malicious script named “pause” which is run when a new container is
spawned.

4/9

Figures 4-6. Contents of source code
INIT_MAIN calls the SETUP_APPS function, which updates and adds the tools that are used
in the subsequent procedures in adversarial ways.

5/9

INIT_MAIN creates an infinite loop and sends a GET request to
http://teamtnt[.]red/RangeDA.php. It also receives a numeric response, which is later used in
the “pwn” function as a supplied argument. If the curl attempt fails, a random number
between 1 and 255 is generated and assigned to $RANGE variable.

Figure 7. Code of pwn function
“pwn” is a wrapper around masscan and scans for ports 2375, 2376, 2377, 4243, 4244,
similar to our previously reported distributed denial-of-service (DDoS) botnet artifacts in
2020. However, in this case another function (CHECK_INTER_SERVER) is called, supplying
the IP addresses and port values.

CHECK_INTER_SERVER first checks if the operating system of the remote IP address
contains “linux” by requesting the “info” of the exposed Docker REST API server. Using this
command, one can find out various metadata about the server, such as the number of
paused running and stopped containers, supported runtimes, server version, architecture,
and others.

Figure 8. CHECK_INTER_SERVER function
We observed that the code looks into the following properties to set flags and identify if the
server that is currently being scanned is a Docker swarm manager:

1. OSType: Describes the operating system of server
2. Repository: Container Registry that is set for use
3. Architecture: Architecture of server
4. Swarm: Current swarm participation status
5. CPUs: Number of CPU cores of server

To gain more details about the misconfigured server such as uptime and total memory
available, the threat actors also spin up containers using docker-cli by doing the following:

1. Setting the “--privileged” flag
2. Using the network namespace of the underlying host “--net=host”
3. Mounting the underlying hosts’ root file system at container path “/host”

https://www.trendmicro.com/vinfo/id/security/news/cybercrime-and-digital-threats/coinminer-ddos-bot-attack-docker-daemon-ports

6/9

Figure 9. Code for spinning up containers
Immediately after this, the script spawns a new container by using “--privileged” flag,
mounting the host root file system, and sharing the hosts’ network namespace from the
image “alpineos/dockerapi,” which has over 10K+ pulls from Docker Hub as of November 09,
2021.

Figure 10. Spawning of new container
After this is done, there is another attempt to spawn a new container on the same server but
with a different motive.

Figure 11. Spawning a container, with base64-encoded string
This container is created from an official image of the “alpine” operating system and
executed with flags that allow root-level permissions on the underlying host, except for the
fact that a base64-encoded string is piped to “bash” after being decoded.

Here is the encoded string after decoding:

Figure 12. Decoded string
A new Secure Shell (SSH) key pair is created and the attributes of the folders are changed
with the immutable bit. TeamTNT’s public key is appended to /root/.ssh/authorized_keys so
that the threat actors can now login using the generated public-private key pair. Later, the
public key is removed.

7/9

 Figure 13. TeamTNT-

related encryption key
Monero miner scripts are downloaded from TeamTNT’s server and piped to “bash” using a
SSH session on the underlying host as the “root” user by supplying the private key from
“/tmp/TeamTNT.” Later, the private key “/tmp/TeamTNT” is removed as well.

We take a quick look at the history of the images {Redacted account} (left) and
“alpineos/docker2api” (right). Here we can see the commands that will be executed when a
container is created from these images. It is also important to note the “pause” script.

Figure 14. Docker image code
Upon diffing the “pause” scripts from both the images, we see some incredible similarities in
the code, with a few differences:

8/9

Figure 15. The “pause” scripts from images
In particular, there is a difference in the way masscan is being used. There are also a few
commented sections, indicating that the threat actors were moving ahead, testing their tools
and arsenal.

Notably, the IP address 45[.]9[.]148[.]182 has a history of being associated with TeamTNT’s
infrastructure, as it has been used by multiple domains:

dl.chimaera[.]cc
githb[.]net (inactive)
github-support[.]com (inactive)
irc.borg[.]wtf
irc.chimaera[.]cc
irc.teamtnt[.]red

9/9

Our July 2021 research into TeamTNT showed that the group previously used credential
stealers that would rake in credentials from configuration files. This could be how TeamTNT
gained the information it used for the compromised sites in this attack.

Based on the scripts being executed and the tooling being used to deliver coinminers, we
arrive at the following conclusions connecting this attack to TeamTNT:

1. “alpineos” (with a total of more than 150,000 pulls with all images combined) is one of
the primary Docker Hub accounts being actively used by TeamTNT

2. There are compromised Docker Hub accounts that are being controlled by TeamTNT to
spread coinmining malware.

We have already reached out to Docker, and the accounts inolved in this attack have been
removed.. In an upcoming blog, we will take a look into the attack techniques being used by
the threat actor.

Conclusion

Exposed Docker APIs have become prevalent targets for attackers as these allow them to
execute their own malicious code with root privileges on a targeted host if security
considerations are not accounted for. This recent attack only highlights the increasing
sophistication with which exposed servers are targeted, especially by capable threat actors
like TeamTNT that use compromised user credentials to fulfill their malicious motives.

Indicators of Compromise

Type Identifier/Hash

Shell
script

79ed63686c8c46ea8219d67924aa858344d8b9ea191bf821d26b5ae653e555d9

Shell
script

497c5535cdc283079363b43b4a380aefea9deb1d0b372472499fcdcc58c53fef

Shell
script

a68cbfa56e04eaf75c9c8177e81a68282b0729f7c0babc826db7b46176bdf222

Domain teamtnt[.]red

IP
address

45.9[.]148.182

https://www.trendmicro.com/vinfo/tmr/?/us/security/news/cybercrime-and-digital-threats/teamtnt-activities-probed

