
1/7

November 5, 2021

The BigBoss Rules: Something about one of the Uroburos’
RPC-based backdoors

emanueledelucia.net/the-bigboss-rules-something-about-one-of-the-uroburos-rpc-based-backdoors/

BigBoss is one of the RPC-based backdoors used by Uroburos (aka Turla, Snake, Venomous Bear,
Pacifier). It was first spotted out in 2018 and was observed to include new features in the last quarter of
2020. During operations usually it’s used in combination with R.A.T. (Remote Administration Tools)
such as Kazuar and Carbon. Several months ago I had the opportunity to analyze some versions of
these pieces of malware and have now decided to publish an excerpt based solely on some specific
technical characteristics observed. The activity had as objective the production of detection and
attribution rules one of which is shared in this post.

Insights

BigBoss implants exports basically (3) three functions. The Start() one is designed to retrieve basic
information and to call sub_407E50 at 0040B0D3. First of all modulenamekernel32.dll is dexored
through the key 0x4d4e and an handle to kernel32.dll is obtained through GetModuleHandle. Malware
writer chose to dynamically resolve certain API functions likely in order to hide information, from static
analysis, about libraries and functions that are used by the implant and normally stored in IAT. In this
case IsWow64Process is found through GetProcAddress to retrieve OS bitness.

https://www.emanueledelucia.net/the-bigboss-rules-something-about-one-of-the-uroburos-rpc-based-backdoors/

2/7

Shortly after a call to sub_409C70 where the path of the .inf file is retrieved.

BigBoss writes a configuration file named backport.inf. The configuration file is written to
%SystemRoot%\INF\backport.inf (as reported in screenshot above) and contains a [Version] section
with various configuration entries. At this point instructions performed call
the StartServiceCtrlDispatcher function in order to connect to the SCM (Service Control Manager)
and start the control dispatcher thread. The dispatcher thread loops, waiting for incoming control
requests for the services specified in the dispatch table.

Service name is SWCheckState. Further API functions is then dynamically resolved. One of them is
CreateService retrieved even in this case through a GetProcAddress call after to have obtained an
handle to advapi32.dll at sub_408790. After the service is created OpenService function is called in
order to interact with the service just created and
ChangeServiceConfig2W & ChangeServiceConfigW are subsequently used to modified parameters

3/7

of the same. Finally, StartService starts the service. In ServiceMain a
RegisterServiceCtrlHandlerEx function is used to register a control handler with the control
dispatcher. SetServiceStatus is called to set the status of the service and the CreateEvent function is
then responsible to create the event object.

SMB Server is then enabled by creating the RegKey HKEY_LOCAL_MACHINE
“SYSTEM\\CurrentControlSet\\Services\\lanmanserver\\parameters on sub_40AB90. Named pipes are
used for interprocess communication (IPC) both locally and remotely. Access to the remote named
pipes is done via SMB. RegKey HKLM\SYSTEM\CurrentControlSet\Control\LSA\Restrict Anonymous
is then set to 0 in order to permit anonymous logon users can access all shared resources on a remote
share

4/7

The RegKey
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\services\LanmanServer\Parameters\NullSessionPipes
is also written in order to add the following values

COMNAP

COMNODE

SQLQUERY

SPOOLSS

LLSRPC

browser

sub_40AAE0 is responsible for connections to remote devices via IPC$. via WNetAddConnection2

5/7

BigBoss supports connections through null sessions or via default credentials. A thread is then created
having sub_408830 as StartAddress. This thread is mainly responsible to handle communications
with CnC (Command and Control) server. CreateNamedPipeW and ConnectNamedPipe are used to
test connection. If successfull it’s able to get additional payloads and write operation results into log
files created and written under %temp% path.

Conclusions

BigBoss is an integral part of the Turla team’s attack and persistence suite. Its development and
evolution have probably shared practices and logic with other implants linked to its main cluster such
as the second stage backdoor called Carbon. For example, by analyzing both, it can be noted that it
shares with it not only a partial overlap in some internal functions, as shown below

6/7

but in some cases whole code chunks having a full overlap

I based one of my hunting rules for this family on this piece of code. The rule is released in the
“Detection” section

Indicators

7/7

Type Value

SHA256 3b8bd0a0c6069f2d27d759340721b78fd289f92e0a13965262fea4e8907af122

SHA256 a679dbde0f4411396af54ea6ac887bd0488b2339cd8a4b509a01ca5e906f70bd

Detection

rule Turla_Code_00325_00291 {
meta:
author = “Emanuele De Lucia”
description = “Yara hunting rule for Turla shared code chunk”
hash1 = “3b8bd0a0c6069f2d27d759340721b78fd289f92e0a13965262fea4e8907af122”
hash2 = “a679dbde0f4411396af54ea6ac887bd0488b2339cd8a4b509a01ca5e906f70bd”
hash3 = “c819ec7743e2f5db13f277749961dffad08dba6dd21450eea33a27403386c959”
hash4 = “7bb65fe9421af04c5546b04a93aa0e517356c0a85856f1265587983ce2bf8aef”
hash5 = “94421ccb97b784c43d92c4b1438481eee9c907db6b13f6cfc4b86a6bb057ddcd”
strings:
$hex = { 8B (4C 24 ??|55 ??) (51|52) 8D (54 24 ??|45 ??) (52|50) 56 E8 ?? ?? ?? ?? 83 C4 ?? 8D (44
24 ??|4D ??) (50|51) 6A ?? 8D (4C 24 ??|55 ??) (51|52) 6A ?? 8D (54 24 ??|45 ??) (52|50) 8B (54 24
??|45 ??) 6A ?? 8D (44 24 ?? | 4D ??) (50|51) 6A ?? 8D (4C 24 ??|55 ??) (51|52) 56 (52|50) FF 15 ??
?? ?? ?? 85 C0 (0F 85 ?? ?? ?? ??|75 ??)}
condition:
$hex
}

