
1/8

Threat Intelligence Team November 3, 2021

Credit card skimmer evades Virtual Machines
blog.malwarebytes.com/threat-intelligence/2021/11/credit-card-skimmer-evades-virtual-machines/

This blog post was authored by Jérôme Segura

There are many techniques threat actors use to slow down analysis or, even better, evade
detection. Perhaps the most popular method is to detect virtual machines commonly used by
security researchers and sandboxing solutions.

Reverse engineers are accustomed to encountering code snippets that check certain registry
keys, looking for specific values indicating the presence of VMware or Virtual Box, two of the
most popular pieces of virtualization software. Many malware families incorporate these anti-
vm features, usually as a first layer.

For web threats, it is more rare to see detection of virtual machines via the browser. Typically
threat actors are content with filtering targets based on geolocation and user-agent strings.
But that feature does exist in modern browsers and can be quite effective.

https://blog.malwarebytes.com/threat-intelligence/2021/11/credit-card-skimmer-evades-virtual-machines/


2/8

In this blog post we show how a Magecart threat actor distributing a digital skimmer is
avoiding researchers and possibly sandboxes by ensuring users are running genuine
computers and not virtual ones.

Virtual Machine detection

Our investigation started by looking at a newly reported domain that could possibly be
related to Magecart. Suspicious JavaScript is being loaded alongside an image of payment
methods. Note that browsing directly to the URL will return a decoy Angular library.

There is one interesting function within this skimmer script that uses the WebGL JavaScript
API to gather information about the user’s machine. We can see that it identifies the graphics
renderer and returns its name.

For many Virtual Machines, the graphics card driver will be a software renderer fallback from
the hardware (GPU) renderer. Alternatively, it could be supported by the virtualization
software but still leak its name.

https://blog.malwarebytes.com/wp-content/uploads/2021/11/load.png


3/8

We notice that the skimmer is checking for the presence of the words swiftshader, llvmpipe
and virtualbox. Google Chrome uses SwiftShader while Firefox relies on llvmpipe as its
renderer fallback.

By performing this in-browser check, the threat actor can exclude researchers and
sandboxes and only allow real victims to be targeted by the skimmer.

Data exfiltration

If the machine passes the check, the personal data exfiltration process can take place
normally. The skimmer scrapes a number of fields including the customer’s name, address,
email and phone number as well as their credit card data.

https://blog.malwarebytes.com/wp-content/uploads/2021/11/detection.png
https://github.com/google/swiftshader
https://docs.mesa3d.org/drivers/llvmpipe.html


4/8

It also collects any password (many online stores allow customers to register an account),
the browser’s user-agent and a unique user ID. The data is then encoded and exfiltrated to
the same host via a single POST request:

https://blog.malwarebytes.com/wp-content/uploads/2021/11/skimmer.png


5/8

Evasion and defenders

This is not surprising to see such evasion techniques being adopted by criminals, however it
shows that as we get better at detecting and reporting attacks, threat actors also evolve their
code eventually. This is a natural trade-off that we must expect.

In addition to code obfuscation, anti-debugger tricks and now anti-vm checks, defenders will
have to spend more time to identify and protect against those attacks or at least come up
with effective countermeasures.

Malwarebytes users are protected against this campaign:

https://blog.malwarebytes.com/wp-content/uploads/2021/11/exfil.png


6/8

Indicators of Compromise (IOCs)

Skimmer code
Skimmer code beautified

https://blog.malwarebytes.com/wp-content/uploads/2021/11/block.png
https://github.com/MBThreatIntel/skimmers/blob/master/anti-vm_skimmer_raw.txt
https://github.com/MBThreatIntel/skimmers/blob/master/anti-vm_skimmer_beautified.txt


7/8

cdn[.]megalixe[.]org 
con[.]digital-speed[.]net 
apis[.]murdoog[.]org 
static[.]opendwin[.]com 
css[.]tevidon[.]com 
mantisadnetwork[.]org 
static[.]mantisadnetwork[.]org 
stage[.]sleefnote[.]com 
js[.]speed-metrics[.]com 
troadster[.]com 
nypi[.]dc-storm[.]org 
web[.]webflows[.]net 
js[.]librarysetr[.]com 
librarysetr[.]com 
opendwin[.]com 
app[.]rolfinder[.]com 
libsconnect[.]net 
artesfut[.]com 
js[.]artesfut[.]com 
js[.]rawgit[.]net 
js[.]demo-metrics[.]net 
demo-metrics[.]net 
dev[.]crisconnect[.]net 
m[.]brands-watch[.]com 
graph[.]cloud-chart[.]net 
hal-data[.]org 
stage[.]libsconnect[.]net 
app[.]iofrontcloud[.]com 
iofrontcloud[.]com 
alligaturetrack[.]com 
webflows[.]net 
web[.]webflows[.]net 
tag[.]listrakbi[.]biz 
api[.]abtasty[.]net 
cloud-chart[.]net 
graph[.]cloud-chart[.]net 
cdn[.]getambassador[.]net 
climpstatic[.]com 
stst[.]climpstatic[.]com 
marklibs[.]com 
st[.]adsrvr[.]biz 
cdn[.]cookieslaw[.]org 
clickcease[.]biz 
89.108.127[.]254 
89.108.127[.]16 
82.202.161[.]77 
89.108.116[.]123 
82.202.160[.]9 
89.108.116[.]48 
89.108.123[.]28 
89.108.109[.]167 
89.108.110[.]208 
50.63.202[.]56 
212.109.222[.]225 
82.202.160[.]8 



8/8

82.202.160[.]137 
192.64.119[.]156 
89.108.109[.]169 
82.202.160[.]10 
82.202.160[.]54 
82.146.50[.]89 
82.202.160[.]123 
82.202.160[.]119 
194.67.71[.]75 
77.246.157[.]133 
82.146.51[.]242 
89.108.127[.]57 
82.202.160[.]8 
185.63.188[.]84 
89.108.123[.]168 
77.246.157[.]133 
185.63.188[.]85 
82.146.51[.]202 
185.63.188[.]59 
89.108.123[.]169 
185.63.188[.]71 
89.108.127[.]16 
82.202.161[.]77


