
1/13

GoSecure Titan Labs November 2, 2021

New Malware “Gameloader” in Discord Malspam
Campaign Identified by GoSecure Titan Labs

gosecure.net/blog/2021/11/02/new-malware-gameloader-in-discord-malspam-campaign-identified-by-gosecure-titan-
labs/

The expert investigators at GoSecure Titan
Labs have found, analyzed and created
signatures to detect a new malware that they
call Gameloader – since it and its variants
contain numerous strings that attempt to
disguise themselves as video games. The file
Titan Labs used for their research was a Rich
Text Format (RTF) file entitled New Purchase
Order from Alibaba.doc provided by the
GoSecure Titan Inbox Detection and Response
(IDR) team. The RTF file downloads a 32-bit
.NET loader, which loads FormBook Stealer.
The following is an in-depth analysis of the Gameloader.

Analysis

Infection Chain

The initial infection vector is via malspam containing links to cdn.discord.com. Using
Discord’s content delivery network (CDN) as a malware distribution system continues to grow
in popularity among threat actors. The email (51875bd4157c2755a6af3ce92218ea03),
shown in Figure 1, purports to be from Alibaba, stating that the user’s purchasing order has
been received and that they can download it by clicking the link labelled DOWNLOAD
PURCHASE ORDER, which downloads a malicious RTF file
(dd59a0508d8c8327a0a326a8e50bc508) from hxxps://cdn[.]discordapp[.]com/attachments/
882541551555846144/882541673186484224/New_Purchase_Order.doc.

https://www.gosecure.net/blog/2021/11/02/new-malware-gameloader-in-discord-malspam-campaign-identified-by-gosecure-titan-labs/

2/13

Figure 1: Malspam

Figure 2 compares a standard RTF file, shown on the left, to New_Purchase_Order.doc,
shown on the right. A standard RTF file consists of RTF control words whereas
New_Purchase_Order.doc clearly does not, indicating that it is heavily obfuscated.

Figure 2: Standard RTF vs. Obfuscated RTF

As depicted in Figure 3, the tool rtfdump.py displays the streams contained in
New_Purchase_Order.doc, their nesting level, and also the amount of hexadecimal
characters in each one. We can see that streams 1, 2, and 3 have a high number of
hexadecimal characters, which warrants a closer examination.

3/13

Figure 3: rtfdump Output

As displayed in Figure 4, by using the s flag to investigate specific streams and the H flag to
decode the hexadecimal characters, we find that stream 3 contains the string equATION.3,
which invokes Equation Editor. By exploiting CVE-2017-11882, a buffer overflow vulnerability
in Microsoft Equation Editor, the RTF file downloads GameLoader
(e3488000bfab3d82a4fd31206ba01954) from hxxp://lg-tv[.]tk/bankzx.exe. Note that we also
used rtfdump.py’s S flag to shift the hexadecimal bytes by one nibble. Due to the
implementation of the RTF parser, it is possible to make the parser ignore a nibble of a byte,
which has the effect of shifting the starting point of hex-encoded data by one nibble, which is
exactly what the threat actor did in this case to further obfuscate the file.

Figure 4: Stream 3, hex-decoded

GameLoader

Figure 5 depicts the functionality of GameLoader’s first stage. Line 105 begins with a call to
function fDangNhap.X0203, which decrypts the second-stage loader. fDangNhap.X0203
receives two parameters, Desc.String1, which is a string in GameLoader’s resource section
that contains the encrypted second-stage loader, and the string Z7FE68C5, which is the
decryption key. We can see that function fDangNhap.X0203’s implementation, beginning at
line 136, iterates through both the encrypted string and the decryption key, subtracting the
integer value of the current character in the key from the integer value of the current
character in the encrypted string. It then converts the resulting value back to a character and
appends it to a string. The resulting string is a base64-encoded, 32-bit .NET DLL, which gets
passed to Convert.FromBase64String, back on line 105. The decoded DLL
(36fa916ea33da29b017dc9b363834024), GameLoader’s second stage loader, is then
passed to the function this.X0204, the implementation of which begins at line 129. It uses
Assembly.Load to reflectively load the DLL into the application domain of GameLoader. It

4/13

then gets the Type object Meshomatic.Ms3dLoader from the newly loaded assembly and
stores it in this.Linear. The function this.X0202 is then called on line 106. As shown in its
implementation, on line 152, this.X0202 calls the Activator.CreateInstance method to create
an instance of Meshomatic.Ms3dLoader, essentially executing the second-stage loader.
Activator.CreateInstance accepts two parameters: the object type to instantiate and an array
of arguments to be passed to the instantiated object. In the bottom of Figure 5, where local
variables are shown, we can see that the array contains 3 strings:
4950726F6475636572436F6E73756D6572436F6C6C65637469, 6A7067, and Tetris.

Figure 5: GameLoader’s First Stage Loader

Following the execution of the instantiated object, we can step inside the second-stage DLL,
internally named ColladaLoader, and see that the first method executed in
Meshomatic.Ms3dLoader is Ms3dLoader.SelectorX, which is passed the 3 aforementioned
arguments. Figure 6 illustrates that besides sleeping for a random amount of time,
Ms3dLoader.SelectorX calls Ms3dLoader.XeH on line 48. Ms3dLoader.XeH simply converts
the hexadecimal string stored in ugz1 to the ascii string IProducerConsumerCollecti. This
string, along with the variable projname, which stores the string Tetris, is then passed to
Ms3dLoader.xyz.

5/13

Figure 6: ColladaLoader’s Injection Function

As shown in Figure 7, Ms3dLoader.xyz retrieves the bitmap image
IProducerConsumerCollecti from Tetris.Properties.Resources.

Figure 7: Ms3dLoader.xyz

The bitmap image, depicted in Figure 8, does not display an image of any kind, only
seemingly randomized pixels.

6/13

Figure 8: Bitmap Image Containing An Encrypted DLL

Back on line 48, in Figure 6, the bitmap image gets stored in a variable that is passed to
Ms3dLoader.cba on line 49. Ms3dLoader.cba iterates through the bitmap image, converting
the Argb value of each pixel into bytes and storing them in an array. It then creates a second
array, using the first 4 bytes of the first array as the size of the second. Starting from the fifth
byte, it copies the bytes in the first array to the second array until the second array is fully
populated. This byte array is then passed to Ms3dLoader.fgh, which is responsible for
decrypting the array. The return value from Ms3dLoader.XeH, which is the string jpg, is also
passed to Ms3dLoader.fgh. Once inside Ms3dLoader.fgh, shown in Figure 9, the string jpg is
converted to a byte array, stored in the variable bytes, and used as the decryption key. The
array is decrypted by XORing each of its bytes with a key byte, and also with the value
stored in the variable num, which is 0x9d. This value was created by XORing the length of
the encrypted array minus one with 112. The decrypted array is GameLoader’s third-stage
loader, a 32-bit .NET assembly internally named CF_Secretaria
(d8e57e7bf8dfe611427511dcc5ae2ec8). Once again, Assembly.Load is used to reflectively
load the DLL. Next, ColladaLoader calls Assembly.GetTypes, which returns an array of all
the types defined in the loaded assembly, and stores the twenty-first type in a variable. It
then uses Type.GetMethods to return an array of the all methods defined for the specified
type, and stores the sixth method in a variable, which it then executes with a call to
MethodInfo.Invoke.

7/13

Figure 9: ColladaLoader’s Decryption Function

Again, we follow the execution to step inside the invoked method. However, CF_Secretaria is
protected with .NET Reactor, a code obfuscation tool designed to protect intellectual
property, which greatly hinders analysis. To overcome this, we save CF_Secretaria to disk,
then use the .NET deobfuscator de4dot to improve the readability of the code. The executed
method belongs to a class named FrmIntegrante. Figure 10 displays the method responsible
for initializing the class’s fields. The method Class6.smethod_0 retrieves the byte array zdljr
from CF_Secretaria’s resource section. The byte array is passed, along with the string
YgSqwuwwJHlcE, to Class6.smethod_5, which is a decryption function that is exactly the
same as ColladaLoader’s decryption function, shown above in Figure 9. Of course, the string
YgSqwuwwJHlcE is the decryption key. The decrypted array is then passed to
Class6.smethod_4, which removes the first 16 bytes, before being stored in
FrmIntegrante.byte_0. The resulting array is a 32-bit executable, FormBook Stealer
(4c1f6f8f4bf9678c49d6ea74baca3576).

8/13

Figure 10: FrmIntegrante’s Initialization

Also depicted in Figure 10 are a set of Windows API functions and their corresponding
libraries that are commonly used for process hollowing, a technique where a payload is
injected and executed in the context of a selected process. Each API function is passed to
FrmIntegrante.smethod_7, which is stored in FrmIntegrante.delegate{number}_0. From
Figure 11, which displays FrmIntegrante.smethod_7’s implementation, we see that the first
parameter, a library name, is passed to FrmIntegrante.LoadLibraryA, a pointer to the
imported function kernel32.LoadLibraryA, which returns a handle to the specified library. The
handle is passed, along with a function name stored in FrmIntegrante.smethod_7’s second
parameter, to FrmIntegrante.GetProcAddress, a pointer to kernel32.GetProcAddress, which
returns the address of the specified function. This is then converted to a delegate and
returned. Therefore, FrmIntegrante.delegate{number}_0 is a reference to a specified
Windows API function.

Figure 11: API Delegate-Building Function

CF_Secretaria implements a switch statement, displayed in Figure 12, to determine into
which process to inject its payload, which is FormBook in this instance. Case zero returns
string_10, which is the path of the currently executing assembly, GameLoader, while cases
1, 2, and 3 return the paths of MSBuild.exe, vbc.exe, and RegSvcs.exe, respectively. In this
instance, case 0 is selected and GameLoader proceeds to inject the payload into its own
process. The case that is selected is determined by the parameter int_12, which is set by the
threat actor in CF_Secretaria’s configuration.

9/13

Figure 12: Process Injection Options

Figures 13 and 14 display the function responsible for the process injection. For readability,
we have added the API call that each delegate refers to. The function begins by calling
kernel32.CreateProcessA. The first parameter, which specifies the process to create, is
string_10, the result from the aforementioned switch statement. The sixth parameter,
containing 134217732U, specifies flags used to set the properties of the created process.
134217732U (0x08000004) sets the flags CREATE_SUSPENDED and
CREATE_NO_WINDOW to true. Thus, the process will be created in suspended mode and
will be executed without a console window. Next, either kernel32.GetThreadContext or
kernel32.Wow64GetThreadContext will be called, depending on whether the process is 32-
bit or 64-bit, and a CONTEXT structure of the process’s main thread will be retrieved. The
base address of the process is parsed out of the CONTEXT structure and passed to
kernel32.ReadProcessMemory, which is used to retrieve the base virtual address of the
process’s view. The base virtual address is then passed to ntdll.ZwUnmapViewOfSection,
which unmaps, or hollows, the entire view from the process’s virtual address space. The
virtual address space is no longer reserved and is now available to map other views. Next, it
allocates space within the process’s virtual address space by calling kernel32.VirtualAllocEx,
then calls kernel32.WriteProcessMemory to inject the payload into the newly allocated
memory. Either kernel32.SetThreadContext or kernel32.Wow64SetThreadContext is called
to change the process’s thread context so that it will now point to the injected payload.
Finally, kernel32.ResumeThread is called to resume the thread and thus, execute the
injected payload.

10/13

Figure 13: Process Injection Function

11/13

Figure 14: Process Injection Function Continued

Conclusion

GameLoader is a multi-stage, steganographic loader that has been observed loading various
types of commodity malware, including AgentTesla, LokiBot, and Snake Keylogger. At the
time of writing, over 1000 GameLoader samples have been uploaded to VirusTotal.

The signatures to detect the emerging threats discussed in this report were developed
through the close monitoring, analysis and reverse engineering conducted by GoSecure
Titan Labs, as part of the GoSecure Titan Managed Detection and Response (MDR)
solution, which includes GoSecure Titan Inbox Detection and Response (IDR) tools for users
to share suspicious emails in real-time with our professional threat hunting team.

Malware Analyst: Sean Mahoney

Indicators of Compromise

12/13

+------+---
----------------------------+---------------------------+
| Type | Indicator
| Description |
+------+---
----------------------------+---------------------------+
| md5 | 51875bd4157c2755a6af3ce92218ea03
| Malspam Email |
| md5 | dd59a0508d8c8327a0a326a8e50bc508
| RTF File |
| md5 | e3488000bfab3d82a4fd31206ba01954
| GameLoader |
| md5 | 36fa916ea33da29b017dc9b363834024
| GameLoader's Second Stage |
| md5 | d8e57e7bf8dfe611427511dcc5ae2ec8
| GameLoader's Third Stage |
| url |
hxxps://cdn[.]discordapp[.]com/attachments/882541551555846144/882541673186484224/New_P
| GameLoader Download URL |
| url | hxxp://lg-tv[.]tk/bankzx.exe
| RTF File Download URL |
+------+---
----------------------------+---------------------------+

Detection

13/13

rule other_rtf_obfuscated_0 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "Obfuscated RTF File"
 created = "2021-09-28"
 hash = "dd59a0508d8c8327a0a326a8e50bc508"
 os = "windows"
 type = "other"
 tlp = "white"
 id = 1
 strings:
 $magic = "{\\rtf"
 $ansi = "ansi"
 $deflang = "deflang"
 $windows = "windows"
 $deff = "deff"
 condition:
 $magic at 0 and
 filesize < 1MB and
 not $ansi in (5..20) and
 not $deflang in (5..20) and
 not $windows in (5..20) and
 not $deff in (5..20)
}
rule malware_game_loader_0 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "GameLoader"
 hash = "e3488000bfab3d82a4fd31206ba01954"
 created = "2021-09-28"
 os = "windows"
 type = "malware.loader"
 tlp = "white"
 rev = 1
 strings:
 $decryptyion_routine = {
 00 02 07 28 ?? ?? ?? ?? 28 ?? ?? ?? ?? 03 07 03
 6F ?? ?? ?? ?? 5D 17 58 28 ?? ?? ?? ?? 28 ?? ??
 ?? ?? 59 0C 06 08 28 ?? ?? ?? ?? 0D 12 ?? 28 ??
 ?? ?? ?? 28 ?? ?? ?? ?? 0A 00 07 17 58 0B 07 02
 6F ?? ?? ?? ?? FE 02 16 FE 01 13 ?? 11 ?? 2D ??
 }
 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 $decryptyion_routine
}

