
1/13

Olivier Laflamme November 2, 2021

Cobalt Strike Process Injection
boschko.ca/cobalt-strike-process-injection/

Windows Internal
Discussing the various methods that Cobalt Strike uses to perform process injection.

Olivier Laflamme

Nov 2, 2021 • 14 min read

https://boschko.ca/cobalt-strike-process-injection/
https://boschko.ca/tag/windows-internal/
https://boschko.ca/author/olivier/
https://boschko.ca/author/olivier/

2/13

I've documented some of my thoughts and ideas around process injection. In this blog will
mostly cover some technical details about Cobalt Strike's process injection, as well as some
of the red team attack techniques you may want to know?

Injection Function

Cobalt Strike currently provides process injection functions in some scenarios. The most
common is to directly inject payload into a new process. This function can be executed
through various sessions that you have obtained, such as Artifact Kit , Applet Kit and
Resource Kit. This article will focus on Cobalt Strike's process injection in Beacon sessions.

The shinject command injects code into any remote process, some built-in post-
exploitation modules can also be injected to a particular remote process through this method.
Cobalt Strike did this because injecting shellocde into a new session would be safer than
migrating the session directly to another C2.

(Probably the reason is that if the new session is not pulled up, it will be embarrassing if the
original session has dropped.)

Therefore, Cobalt Strike "post-exploitation" will start a temporary process when it is
executed, and inject the DLL file corresponding to the payload into the process, and confirm
the result of the injection by retrieving the named pipe. Of course, this is just a special case
of process injection. In this way, we can safely operate the main thread of these temporary
processes without worrying about operation errors that cause the program to crash and
result in loss of permissions. This is a very important detail to understand when learning to
use Cobalt Strike injection process.

The first parameter of the inject command mentioned in the original text is the PID of the
target program to be injected, and the second parameter is the architecture of the target
program. If not filled, the default is x86.

inject 7696 x64

https://www.cobaltstrike.com/help-artifact-kit
https://www.youtube.com/watch?v=QvQerXsPSvc
https://www.cobaltstrike.com/help-resource-kit

3/13

The parameter writing method of shinject is the same as that of inject. If the third
parameter is not written, you will be prompted to select a shellcode file. Pay attention to the
bin format payload that needs to be generated.

shinject 7696 x64 C:\Users\VM_Windows\Documents\payload.bin

In addition to the two beacon commands mentioned above, in fact, there is also a shspawn .
Its role is to start a process and inject shellcode into it. The parameters only need to select
the program architecture.

shspawn x64 C:\Users\VM_Windows\Documents\payload.bin

4/13

As shown in the figure, the payload is injected into the dllhost.exe program. This method is
much more stable than the first two, and you are not afraid of crashing the program.
shspawn and shinject are quite flexible because they allow us to provide any arbitrary
shellcode – including 64-bit and stageless.

So whats actually going on?

Prior Knowledge

To better understand all that follows lets take a step back and have a look at sacrificial
processes by looking at execute-assembly.

In a nutshell, whats happening when you're invoking execute-assembly is that you're going
to create a new job (as the function highly suggests) but the beauty of it is that there is a
.spawn and as you can see the only difference between the two lines is just the

5/13

architecture.

So if the beacon that is running on the target is x64 its actually going to spawn a new x64
job, if not its going to spin a 32bit version.

The main takeaway isevery time you see .spawn , especially with the BIDs which is the
reference to the current beacon running on the target, this is where things can get slightly
dangerous if you dont understand whats happening.

In a nutshell, there is a concept in Cobalt Strike that is called sacrificial process. What is
does is pretty simply. Its just going to spawn a process, and inject itself into it and do
whatever you asked for it to invoke. The main reason / the idea behind this is that your main
beacon is not going to die regardless of whatever you're running. Because technically, you
could kill your beacon if you're doing something extremely bad, and its just corrupting the
whole process, and you'd lose your foothold. So the idea here is that you're going to inject
inside of a process that is not related to the current process.

Therefore, even if you execute something in assembly and its not working the way its
supposed to then its just going to kill the sacrificial process as opposed to killing your whole
beacon.

The thing is, you might think that "oh that's super cool ill just run my .net payload with
execute-assembly and nothing bad will happen" but in reality if you look at the code there is
no indicator that you're actually creating a remote process. Which is something that you

6/13

should keep in mind.

So the main takeaway is that you might want to have a list of all the functionality that uses
the .spawn function because you may want to avoid doing remote process injection in some
specific cases. Every time you see .spawn in the CS code its pretty sure that it'll create a
new process. This is something to keep in mind.

You'll also see something called SetupSmartInject and all that kind of stuff.

Really, all that is is setting up everything needed to inject inside of the remote process. And
here its just using some internal magic to try an obfuscate what you're trying to do. But once
again, when it comes to EDR's and stuff like that, if you don't try and actually hide yourself

7/13

you're probably still going to raise alerts about the fact that you remotely created a process.
And this is something that can be configured in your malleable profile.

This is a typical malleable config file. The idea behind these are that because most of the
time its going to be using http so you'll want to customize your http traffic to blend into
legitimate traffic.

So this is usually where you have your SpawnTo Process information. As you can see the
sacrificial process can actually be defined for both architectures. But whats important is that
you can specify which function you want to use when you do remote process injection. So
you can specify how you want to do it and in which order.

Before diving deeper into this, its always a good thing to disable the one's you think is
insecure. We'll discuss all about this further down the blog.

In this case the NtQueueApcThread was commented out so you wont be using that one. By
default the top 6 listed are what you "can" use. CreateThread as you know is only going to
be used to create a thread inside of the remote process. CreateRemoteThread is fairly safe
IF you had EDR unhooking in place. NtQueueApcThread is probably the least secure one
of them. The reason is that QueueApcThread is actually hijacking an existing thread most of
the time. So sometimes if you're hijacking something that you shouldn't then you may run
into some unintended issues, so if possible avoid this at all costs. The other ones are more
or less the same as CreateRemoteThread just using a different approach. This is in my
opinion super important when it comes to process injection, because as we've just seen
above some CS functionality will force you to have process injection by default. And the ones

https://github.com/threatexpress/malleable-c2/blob/master/jquery-c2.4.3.profile%20

8/13

that rely on sacrificial processes will always call .spawn and will always end up injecting
inside of a remote process. The process is actually going to be the one that you specify in
your profile, so technically you could have a different one for x64 and x86.

Now there is quite a lot of people who have lists of processes that get spawned all the time
that don't live for to long so you could try to mimic that.

Injection Process

The process-inject block in Cobalt Strike's Malleable C2 configuration file is where the
configurations for process injection is defined. So this is usually where you have your
SpawnTo Process information.

process-inject {
 # set remote memory allocation technique
 set allocator "NtMapViewOfSection";

 # shape the content and properties of what we will inject
 set min_alloc "16384";
 set userwx "false";

 transform-x86 {
 prepend "\x90";
 }

 transform-x64 {
 prepend "\x90";
 }

 # specify how we execute code in the remote process
 execute {
 CreateThread "ntdll!RtlUserThreadStart";
 CreateThread;
 NtQueueApcThread-s;
 CreateRemoteThread;
 RtlCreateUserThread;
 }
}

So, the execution flow for process-inject block of code in Cobalt Strike's Malleable profile is
roughly as follows:

1. Open the handle of the remote process.
2. Allocate memory in remote processes.
3. Copy the shellcode to the remote process.
4. Execute shellcode in the remote process.

Step 1:

https://www.cobaltstrike.com/help-malleable-postex#processinject

9/13

The first step is to distribute and copy data to the remote host. If we start a temporary
process; that is, we already have a handle to the remote process, at this time if we want to
inject the code into the existing remote process Cobalt Strike will use OpenProcess to solve
this problem.

Step 2:

Cobalt Strike provides two options for allocating memory and copying data into remote
processes.

The first solution is the classic: VirtualAllocEx -> WriteProcessMemorypattern , which
is very common in attack tools. It is worth mentioning that this solution is also applicable to
different process architectures, and the application of process injection is not limited to the
injection of x64 target processes. This means that a good solution needs to take into account
the different extreme situations that can occur (for example, x86-> x64, or x64-> x86, etc.).
This makes it VirtualAllocEx a relatively reliable choice, and Cobalt Strike's default
solution is also this. If you want to directly specify this mode, you can set process-inject
allocator option VirtualAllocEx .

The second solution provided by Cobalt Strike is CreateFileMapping -> MapViewOfFile
-> NtMapViewOfSection mode. This solution will first create a mapping file that supports
the Windows system, and then map the view of the mapping file to the current process. Then
Cobalt Strike will copy the injected data to the memory associated with the view and
NtMapViewOfSection call our remote process. To use this scheme you can set the
allocator to NtMapViewOfSection . The disadvantage of this scheme is only for x86

-> x86 and x64 -> x64 , regarding the cross-architecture injection when Cobalt
Strike will automatically switch back to VirtualAllocEx mode.

When VirtualAllocEx -> WriteProcessMemory mode injection is subject to soft
defense it is also a good choice to try this scheme instead. (It is very useful when killing
software without detecting other methods of copying data to a remote process.)

Step 3:

The third step is data conversion. Step 2 and this step as mentioned above assume that
everything is normal and the original data is copied to the injected data, which is almost
impossible in a real environment. To this end, Cobalt Strike's process-inject adds the
function of transforming and injecting data. The min_alloc option is the minimum size of
the block that Beacon will allocate in the remote process, startrwx and the userwx
option is the initial Boolean value of the allocated memory and the final permission of the
allocated memory. If you want to prohibit data from being readable, writable, and executable
(RWX), please set these values to false . transform-x86 and those that transform-
x64 support converting data to another architecture. If you need to add data in advance,
make sure it is executable code for the corresponding architecture.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

10/13

Note, many content signatures look for specific bytes at a fixed offset at the beginning of the
observable boundary. These checks occur in O (1) time, which is conducive to O (n) search.
Excessive Inspection and security technology may consume a lot of memory, and
performance will be reduced accordingly.

Binary padding also affects post-exploitation of the thread start address offset in Cobalt
Strike. When a Beacon injects a DLL into memory; its ReflectiveLoader starts the thread
at the position where the function exported by the DLL should be. This offset is shown in the
thread start address feature, and is looking for a specific "post-exploitation" DLL of potential
indicators. The data before injection into the DLL will affect this offset. (It ’s okay not to know
about thread related things, I will talk about it next ...)

Step 4:

The fourth step is code execution. To better understand all of this let's take a look at the
subtle differences between different execution methods in a beacon:

CreateThread

CreateThread from the beginning. I think that CreateThread if it exists, should first
appear in an execution block, this function only runs when it is limited to self-injection. Using
CreateThread will start a thread pointing to the code you want your Beacon to run. But be

careful, when you self-inject in this way, the thread you pull will have a starting address,
which is not related to the module (by module I mean DLL / current program itself) loaded
into the current process space. For this you can specify CreateThread“module！
somefunction + 0x ##” . This variant will generate a suspended thread that points to the
specified function, if the specified function cannot be GetProcAddressobtained this is
because Beacon will use to SetThreadContextupdate and will use this new thread to run
the injected code, which is also a self-injection method that can provide you with a more
favorable foothold.

SetThreadContext

Next is SetThreadContext , which is used in post-exploitation. One of the main thread
method interim process tasks generated. The Beacon is SetThreadContext suitable for
x86 -> x86, x64 -> x64and x64-> x86 . If you choose to use it SetThreadContext ,

place it in CreateThread after the option in the execution block. SetThreadContext
when used; your thread will have a starting address that reflects the original execution entry
point of the temporary process which is very nice.

NtQueueApcThread-s

Another way to suspend a process is to use it NtQueueApcThread-s . This method uses
NtQueueApcThread which is a one-time function to queue up when the target thread wakes

up next time. In this case, the target thread is the main thread of the temporary process. The

https://attack.mitre.org/techniques/T1009/
https://medium.com/@olafhartong/cobalt-strike-remote-threads-detection-206372d11d0f

11/13

next step is to call ResumeThread , this function wakes up the main thread of our suspended
process, because the process has been suspended at this time, we do not have to worry
about returning this main thread to the process. This method only applies to x86 -> x86
and x64 -> x64 .

Determining whether to use SetThreadContext or NtQueueApcThread-s depends on
you. In most cases I think the latter is obviously more convenient.

NtQueueApcThread

Another approach is through NtQueueApcThread it is like NtQueueApcThread-sun but it
targets existing remote processes. This method needs to push the RWX stub to the remote
process. This stub contains the code related to the injection. To execute the stub, you need
to add the stub to the APC queue of each thread in the remote process. The stub code will
be executed.

So what is the role of stubs?

First, the stub checks whether it is already running, and if it is, it executes nothing, preventing
the injected code from running multiple times.

Then the stub will be called with the code and its parameters we injected CreateThread .
This is done to let APC return quickly and let the original thread continue to work.

No thread will wake up and execute our stub. Beacon will wait about 200ms to start and
check the stub to determine whether the code is still running. If not, update the stub and
mark the injection as already running, and continue to the next item. This It is
NtQueueApcThread the implementation details of the technology.

At present, I have used this method a few times, because some security products have very
little attention to this incident. In other words, OPSEC has paid attention to it, and it is indeed
a memory indicator that promotes RWX stubs. It will also call the code of the remote process
that we push CreateThread . The starting address of the thread does not support the
module on the disk. Use Get-InjectedThread scan not effectively. If you think this
injection method is valuable, please continue to use it. Pay attention to weighing its pros and
cons. It is worth mentioning that this method is limited to x86 -> x86 and x64 -> x64.

CreateRemoteThread

Another way is via CreateRemoteThread which can be used literally as a remote injection
technology. Starting with Windows Vista, injecting code across session boundaries will fail. In
Cobalt Strike, vanilla CreateRemoteThreadcovers x86 -> x86, x64 -> x64 and
x64 -> x86 . The movement of this technology is also obvious. When this method is used to
create a thread in another process, it will trigger event 8 of the system monitoring tool
Sysmon. Such, Beacon has indeed implemented a CreateRemoteThread variant that

12/13

“module！function + 0x ##” accepts a pseudo start address in the form
CreateThreadSimilarly, Beacon will create its thread in the suspended state and use
SetThreadContext / ResumeThread enable to execute our code. This variant is limited to
x86 -> x86 and x64 -> x64 . If the GetProcAddress specified function cannot be used,

this variant will also fail.

RtlCreateUserThread

The last way Cobalt Strike executes blocks is RtlCreateUserThread . This way
CreateRemoteThread functions is very enjoyable but has some limitations, it is not perfect

and has flaws.

RtlCreateUserThread code will be injected across the session boundary. It is said that
there will be many problems during the injection on Windows XP. This method will also
trigger event 8 of the system monitoring tool Sysmon. One benefit is that it covers x86->
x86, x64-> x64, x64-> x86, and x86-> x64 , the last case is very important.

x86 -> x64 injection are in x86 Beacon carried out sessions. And for your post-
exploitation generation process x64 tasks, hashdump , mimikatz , execute-assembly
and powerpick modules are silent as x64. In order to achieve x86 -> x64 injection, this
method converts the x86 process to x64 mode and injects RWX stubs to facilitate calling
from x64 RtlCreateUserThread . This technique comes from Meterpreter. RWX stubs are
a pretty good memory indicator. I have long suggested: "Let the process stay in x64 mode as
much as possible", the above situation is why I would say this, and it is also recommended to
put one in all. So process-inject is the lowest way to have it, you can use it when there
is no other work execute blockRtlCreateUserThread

How to Live Without Process Injection

When thinking about how to use these attack techniques flexibly, I was also thinking what to
do if none of these methods work?

Process injection is a technique used to, at its core transfer payload / capability to migrate to
different processes (such as from desktop session 0 to desktop session 1), you can use
the runu command to transfer to different processes without process injection, (in other
words, you can run runu if you want to run a command under a parent in another desktop
session.) and you can specify the program that you want to run as child processes of any
process. This is a way to introduce a session to another desktop session without process
injection.

13/13

Process injection is also one of the methods to execute code without landing files on the
target. Many post-exploitation functions in Cobalt Strike can choose to attack specific
processes. For example, specifying the current Beacon process can be leveraged without
having to perform a remote injection. This is more-or-less self-injection.

Of course, life is not perfect and it is not perfect to execute code without a "file on the
ground". Sometimes it is best to put something on the disk.

References:

