
1/10

Two Tools for Malware Analysis and Reverse Engineering
in Ghidra

insights.sei.cmu.edu/blog/two-tools-for-malware-analysis-and-reverse-engineering-in-ghidra/

Jeffrey Gennari

November 1, 2021

https://insights.sei.cmu.edu/blog/two-tools-for-malware-analysis-and-reverse-engineering-in-ghidra/
https://insights.sei.cmu.edu/authors/jeffrey-gennari/

2/10

Since the public release by the National Security Agency of the software reverse engineering
(SRE) tool suite Ghidra, our team of researchers at the SEI’s CERT Division have been
working to create a new suite of tools to make it easier for analysts to take advantage of
Ghirdra’s capabilities and interface. This new suite of tools, known as Kaiju, helps malware
analysis and reverse engineering take advantage of Ghidra’s capabilities and interface,
which are relatively easy to use during malware analysis. The tools included with Kaiju give
malware analysts many advantages as they are faced with increasingly diverse and complex
malware threats.

One of the more complex plugins included in Kaiju is a Satisfiability Modulo Theories (SMT)-
based path analysis tool named GhiHorn. In this post we present and discuss the use of two
Ghihorn tools: API Analyzer and Path Analyzer. Both of these tools enable analysts to find
paths in executables based on numerous criteria, such as user-specified start and end
addresses or passing through specific program points. Our previous work has shown that
executable path finding can support various malware analysis activities. One example that
we have previously cited is a malware program that contains a check for the presence of a
debugger, a common technique meant to hinder analysis. The analyst may wish to know if
there is a viable execution path that circumvents this check and, if there is a path, what
inputs and environmental conditions are needed to traverse it. Both PathAnalyzer and
ApiAnalyzer can be used to address and solve these types of problems.

GhiHorn Tools: ApiAnalyzer and PathAnalyzer

On top of the GhiHorn platform we have implemented two path analysis tools: PathAnalyzer
and ApiAnalyzer. Both tools use Horn encoding and solving as their primary strategy for path
analysis, and both emphasize the usefulness of results.

PathAnalyzer

PathAnalyzer allows an analyst to determine if a path exists between two locations in a
program and, if so, what values are required to take that path. PathAnalyzer integrates with
Ghidra as a plugin (Figure 1). An analyst must provide start and goal addresses to seed the
analysis. If a path is feasible, PathAnalyzer returns an answer in the form of a graph
containing information about the recovered path.

https://en.wikipedia.org/wiki/National_Security_Agency
https://ghidra-sre.org/
https://www.nsa.gov/resources/everyone/ghidra/
https://insights.sei.cmu.edu/blog/introducing-cert-kaiju-malware-analysis-tools-for-ghidra/
https://dl.acm.org/doi/10.5555/1792734.1792766
https://github.com/CERTCC/kaiju/blob/main/docs/GhiHorn.md
https://insights.sei.cmu.edu/blog/path-finding-in-malicious-binaries-first-in-a-series/

3/10

Figure 1: PathAnalyzer user interface

An example of a recovered path is shown in Figure 2. Each vertex in the graph represents a
basic block traversed. GhiHorn operates on live variables present in each basic block, with
an emphasis on variables that are linked to decompilation data structures. The variable
values in the vertices are the values that Z3 selected to reach the goal address. The graph is
clickable in the Ghidra user interface, meaning that selecting a node will highlight the
relevant decompilation and disassembly instructions for the answer vertex.

https://insights.sei.cmu.edu/media/images/figure1_ghirhorntools_11012021.original.png
https://en.wikipedia.org/wiki/Live_variable_analysis

4/10

Figure 2: PathAnalyzer answer graph

If no path is found, then a counterexample graph is generated showing how the query failed.
In this version of GhiHorn the counterexample is not very meaningful. Currently, the actual
results for unsatisfiable queries are presented as they are returned by Z3: as a graph with
Boolean values assigned to states found in the encoding. For example, Table 1 shows the
disassembly for a function. Attempting to find a path from the beginning of the function at
address 0x100003f50 to the address 0x100003f9d is unsatisfiable because local_1c
is always an even number, and the condition guarding the instruction at 0x100003f9d
checks for an odd number. The disassembly is shown because the default result for an
unsatisfiable answer is to return Boolean values (true or false) for block addresses. Aside
from learning that this particular attempt to find a path is infeasible, we are still working to
make counterexamples more useful.

https://insights.sei.cmu.edu/media/images/figure2_ghihorntools_11012021.original.png

5/10

Table 1: Unsatisfiable example

ApiAnalyzer

The second tool based on GhiHorn, named ApiAnalyzer, uses binary path and data flow
analysis to reason about program behaviors. Like its Pharos namesake, the premise of
GhiHorn ApiAnalyzer is that interesting program behaviors can be determined by finding API
function call sequences that share common data. For example, Figure 3 below shows the
common way to list the processes running on a system using the Windows Tool Help
Functions. The API calls used are highlighted in red.

https://insights.sei.cmu.edu/media/images/table1_ghihorntools_11012021.original.png
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686832(v=vs.85).aspx
https://insights.sei.cmu.edu/media/images/figure3_ghirhorntools_11012021.original.png

6/10

Figure 3: Source code to iterate through running processes using API calls to Windows Tool
Help Functions

The GhiHorn version of ApiAnalyzer formulates a program using the same hornified control
flow graph as PathAnalyzer. This approach is reasonable given that the API analysis
problem can be framed as a path reachability problem with a few additional constraints
namely that the path must traverse a specific sequence of API function calls. More
specifically the additional constraints are introduced to tally the API function calls covered
and to track variable values passed between API functions.

The API call sequences and variables to track are specified as signatures using a JSON-
based format similar to that of the Pharos ApiAnalyzer. For example, a simple signature to
link the opening and closing of the same file is shown in Table 2. Note that the two functions
operate on the same data: a variable labeled HANDLE. CreateFileA returns the initial
value, and CloseHandle must operate on that same value for a match to exist.

Table 2 : API signature

The ApiAnalyzer plugin is shown in Figure 4. In this image, two simple signatures are being
searched for: reading and writing the same file, as well as opening and closing the same file.
Both signatures are found in the program, and an answer graph is presented. This graph is
shown in Figure 5.

https://insights.sei.cmu.edu/media/images/Screen_Shot_2021-11-01_at_9.27.20_AM.original.png

7/10

Figure 4: Ghidra ApiAnalyzer user interface

https://insights.sei.cmu.edu/media/images/figure4_ghihorntools_11012021.original.png

8/10

Figure 5: ApiAnalyzer answer graph

ApiAnalyzer’s answer graph is basically the same as the graph generated by PathAnalyzer.
Imported API functions for which there is an implementation are highlighted in cyan. API
functions for which there is no implementation are colored magenta. As before, the graph
includes variable values that are used to construct the path, and the graph can be used for
navigation in the Ghidra disassembly and decompiler windows.

The Future of GhiHorn

https://insights.sei.cmu.edu/media/images/figure5_ghidratools_figure5.original.png

9/10

GhiHorn provides the capability to reason about program paths in Ghidra. The Horn-based
tools provided by GhiHorn and the tight integration with Ghidra’s user interface makes formal
program analysis tools accessible to malware analysts and reverse engineers. Future
versions of the plugin will continue to provide new and better ways to consume results and to
model more complex code structures. We also plan on generating better counterexamples to
make it more evident why a path could not be recovered. Finally, we’re working on a better
memory model that better represents a real program’s address space.

GhiHorn is publicly available as part of the CERT Kaiju Framework. The source code and
build instructions for GhiHorn (and all Kaiju tools) are available on GitHub. We welcome
suggestions for improvements or for new utilities that would be useful for building new tools
to support malware analysis and reverse engineering.

Additional Resources

Read the SEI Blog post Introducing CERT Kaiju: Malware Analysis Tools for Ghidra.

Read the SEI Blog post GhiHorn: Path Analysis in Ghidra Using SMT Solvers.

View the SEI Podcast Reverse Engineering Object-Oriented Code with Ghidra and
New Pharos Tools.

WRITTEN BY

MORE BY THE AUTHOR

GhiHorn: Path Analysis in Ghidra Using SMT Solvers

October 18, 2021 • By Jeffrey Gennari

Introducing CERT Kaiju: Malware Analysis Tools for Ghidra

September 13, 2021 • By Garret Wassermann , Jeffrey Gennari

Using OOAnalyzer to Reverse Engineer Object Oriented Code with Ghidra

July 15, 2019 • By Jeffrey Gennari

Path Finding in Malicious Binaries: First in a Series

https://github.com/certcc/kaiju
https://insights.sei.cmu.edu/blog/introducing-cert-kaiju-malware-analysis-tools-for-ghidra/
https://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=637363
https://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
https://insights.sei.cmu.edu/authors/jeffrey-gennari/
https://insights.sei.cmu.edu/blog/introducing-cert-kaiju-malware-analysis-tools-for-ghidra/
https://insights.sei.cmu.edu/authors/garret-wassermann/
https://insights.sei.cmu.edu/authors/jeffrey-gennari/
https://insights.sei.cmu.edu/blog/using-ooanalyzer-to-reverse-engineer-object-oriented-code-with-ghidra/
https://insights.sei.cmu.edu/authors/jeffrey-gennari/
https://insights.sei.cmu.edu/blog/path-finding-in-malicious-binaries-first-in-a-series/

10/10

December 10, 2018 • By Jeffrey Gennari

Pharos Binary Static Analysis Tools Released on GitHub

August 28, 2017 • By Jeffrey Gennari

MORE IN REVERSE ENGINEERING FOR MALWARE ANALYSIS

GhiHorn: Path Analysis in Ghidra Using SMT Solvers

October 18, 2021 • By Jeffrey Gennari

Introducing CERT Kaiju: Malware Analysis Tools for Ghidra

September 13, 2021 • By Garret Wassermann , Jeffrey Gennari

3 Ransomware Defense Strategies

November 9, 2020 • By Marisa Midler

Using OOAnalyzer to Reverse Engineer Object Oriented Code with Ghidra

July 15, 2019 • By Jeffrey Gennari

Business Email Compromise: Operation Wire Wire and New Attack Vectors

April 8, 2019 • By Anne Connell

https://insights.sei.cmu.edu/authors/jeffrey-gennari/
https://insights.sei.cmu.edu/blog/pharos-binary-static-analysis-tools-released-on-github/
https://insights.sei.cmu.edu/authors/jeffrey-gennari/
https://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
https://insights.sei.cmu.edu/authors/jeffrey-gennari/
https://insights.sei.cmu.edu/blog/introducing-cert-kaiju-malware-analysis-tools-for-ghidra/
https://insights.sei.cmu.edu/authors/garret-wassermann/
https://insights.sei.cmu.edu/authors/jeffrey-gennari/
https://insights.sei.cmu.edu/blog/3-ransomware-defense-strategies/
https://insights.sei.cmu.edu/authors/marisa-midler/
https://insights.sei.cmu.edu/blog/using-ooanalyzer-to-reverse-engineer-object-oriented-code-with-ghidra/
https://insights.sei.cmu.edu/authors/jeffrey-gennari/
https://insights.sei.cmu.edu/blog/business-email-compromise-operation-wire-wire-and-new-attack-vectors/
https://insights.sei.cmu.edu/authors/anne-connell/

