
1/43

A detailed analysis of the STOP/Djvu Ransomware
cybergeeks.tech/a-detailed-analysis-of-the-stop-djvu-ransomware/

Summary

STOP/Djvu ransomware is not a very known ransomware like Conti, REvil or BlackMatter,
however ESET ranked it on the 3rd place in the top ransomware families in Q2 2020
(https://www.welivesecurity.com/wp-
content/uploads/2020/07/ESET_Threat_Report_Q22020.pdf). This ransomware can run with
one of the following parameters: “–Admin”, “–Task”, “–AutoStart”, “–ForNetRes”, and “–
Service”. The process doesn’t target specific countries based on their country code, and also
decrypts a list of files, file extensions and folders that will be skipped. Two persistence
mechanisms are implemented: a Run registry key and a scheduled task created using COM
objects. The malware computes the MD5 hash of the MAC address and performs a GET
request to the C2 server based on it. The binary also acts as a downloader for 2 malicious
files called build2.exe and build3.exe. The victim ID is decrypted using the XOR operator and
then written to a file called PersonalID.txt. Both local drives and network shares are targeted
by the malware, and the files are encrypted using the Salsa20 algorithm. The Salsa20 matrix
used for encrypting files is based on a UUID generated using the UuidCreate API, which is
encrypted using an embedded RSA public key (if the C2 server is unreachable) or a public
key downloaded from the C2 server. The RSA implementation found in the executable is
taken from the OpenSSL project hosted at https://github.com/openssl/openssl.

Analyst: @GeeksCyber

Technical analysis

SHA256: 4380c45fd46d1a63cffe4d37cf33b0710330a766b7700af86020a936cdd09cbe

The following PDB path can be found in the binary:
“C:\xudihiguhe\jegovicatusoca\jijetogez\winucet\xusev\kucor.pdb”. There is a call to
GlobalAlloc that allocates several bytes from the heap:

Figure 1
The malware calls the LoadLibraryW function in order to load the “kernel32.dll” file into the
address space of the process:

https://cybergeeks.tech/a-detailed-analysis-of-the-stop-djvu-ransomware/
https://www.welivesecurity.com/wp-content/uploads/2020/07/ESET_Threat_Report_Q22020.pdf
https://github.com/openssl/openssl
https://twitter.com/GeeksCyber

2/43

Figure 2
The GetProcAddress API is utilized to retrieve the address of the “VirtualProtect” function:

Figure 3
The memory area allocated above is filled in by the malware, and the VirtualProtect routine is
used to change its protection to 0x40 = PAGE_EXECUTE_READWRITE:

Figure 4
There is also a lot of garbage code in the binary that is never executed, as shown in figure 5:

3/43

Figure 5
The process jumps at the beginning of the new shellcode, as highlighted below:

4/43

Figure 6
The binary retrieves the address of the following functions using GetProcAddress:
“GlobalAlloc”, “GetLastError”, “Sleep”, “VirtualAlloc”, “CreateToolhelp32Snapshot”,
“Module32First”, “CloseHandle”. CreateToolhelp32Snapshot is utilized to take a snapshot of
the current process that includes all its modules (0x8 = TH32CS_SNAPMODULE):

Figure 7
The ransomware extracts information about the first module of the process using the
Module32First API:

Figure 8
The malicious process allocates and populates a new memory area via a function call to
VirtualAlloc (0x1000 = MEM_COMMIT and 0x40 = PAGE_EXECUTE_READWRITE):

Figure 9
The process jumps at the beginning of the new shellcode, as highlighted below:

5/43

Figure 10
The malware calls the LoadLibraryA API to load the following DLLs into memory: user32.dll,
kernel32.dll and ntdll.dll. It also retrieves the address of the following functions:
“MessageBoxA”, “GetMessageExtraInfo”, “WinExec”, “CreateFileA”, “WriteFile”,
“CloseHandle”, “CreateProcessA”, “GetThreadContext”, “VirtualAlloc”, “VirtualAllocEx”,
“VirtualFree”, “ReadProcessMemory”, “WriteProcessMemory”, “SetThreadContext”,
“ResumeThread”, “WaitForSingleObject”, “GetModuleFileNameA”, “GetCommandLineA”,
“NtUnmapViewOfSection”, “NtWriteVirtualMemory”, “RegisterClassExA”,
“CreateWindowExA”, “PostMessageA”, “GetMessageA”, “DefWindowProcA”,
“GetFileAttributesA”, “GetStartupInfoA”, “VirtualProtectEx”, “ExitProcess”.

From our perspective, the malware developers have implemented some actions that don’t
influence the main execution flow as an anti-analysis mechanism. GetFileAttributesA is used
to retrieve file system attributes for a non-existent file:

Figure 11
The file registers a window class called “saodkfnosa9uin” using the RegisterClassExA
routine:

Figure 12

6/43

The CreateWindowExA function is utilized to create a new window (0x200 =
WS_EX_CLIENTEDGE, 0xCF0000 = WS_OVERLAPPEDWINDOW, 0x80000000 =
CW_USEDEFAULT):

Figure 13
The process allocates a new memory area via a function call to VirtualAlloc (0x1000 =
MEM_COMMIT and 0x4 = PAGE_READWRITE):

Figure 14
The ransomware extracts the content of the STARTUPINFO structure:

Figure 15
The malware creates a copy of itself in a suspended state via a call to CreateProcessA
(0x08000004 = CREATE_NO_WINDOW | CREATE_SUSPENDED):

Figure 16

7/43

GetThreadContext is used to retrieve the context of a specific thread:

Figure 17
The malicious binary unmaps a view of a section from the address of the newly created
process using ZwUnmapViewOfSection:

Figure 18
The VirtualAllocEx routine is utilized to allocate new space in the newly created process
(0x3000 = MEM_COMMIT | MEM_RESERVE and 0x40 = PAGE_EXECUTE_READWRITE):

Figure 19
The ransomware writes data to the area allocated above using multiple calls to
ZwWriteVirtualMemory, as displayed in figure 20:

8/43

Figure 20
The SetThreadContext function is used to set the context for the remote thread:

Figure 21
The binary resumes the main thread of the suspended process using ResumeThread:

9/43

Figure 22
We’ve extracted the executable from memory, and we continue to analyze this file. The
following PDB path has been found: “e:\doc\my work
(c++)_git\encryption\release\encrypt_win_api.pdb”. The binary initializes the use of the
WinINet functions by calling the InternetOpenW API (the user agent being “Microsoft Internet
Explorer”):

Figure 23
The malware performs a GET request to https[:]//api.2ip.ua/geo.json, which reveals details
about the location of the IP address:

Figure 24
InternetReadFile is used to read the response from the server, and an example of a JSON
form is displayed below:

Figure 25

10/43

The “country_code” element is compared with “RU” (Russian language), “BY” (Belarusian
language), “UA” (Ukrainian language), “AZ” (Azerbaijani language), “AM” (Armenian
language), “TJ” (Tajik language), “KZ” (Kazakh language), “KG” (Kyrgyz language), “UZ”
(Uzbek language) and “SY” (Syriac language):

Figure 26
The systems that have one of the languages enumerated above will not be encrypted. The
priority for the current process is set to high by calling the SetPriorityClass routine (0x80 =
HIGH_PRIORITY_CLASS):

Figure 27
The executable retrieves the command-line string for the process and then returns an array
of pointers to the command-line arguments:

Figure 28
It’s important to mention that the malware can run with one of the following parameters: “–
Admin”, “–Task”, “–AutoStart”, “–ForNetRes”, and “–Service”. We’ll describe the execution
flows with different parameters later on.

All process IDs that correspond to the processes on the system are retrieved by calling the
EnumProcesses API:

Figure 29
Each process object is opened by the ransomware using OpenProcess (0x410 =
PROCESS_QUERY_INFORMATION | PROCESS_VM_READ):

Figure 30

11/43

The malware extracts a handle for each module from a process that was successfully
opened:

Figure 31
The GetModuleBaseNameW function is used to retrieve the base name of a module that is
compared with the name of the executable (in our case, “wininet_dump.exe”):

Figure 32
The binary performs a lot of XOR operations (key = 0x80) in order to decrypt relevant strings.
The next figure contains a buffer with the C2 server securebiz[.]org:

Figure 33

The ransomware opens the Run registry key using RegOpenKeyExW (0x80000001 =
HKEY_CURRENT_USER and 0xF003F = KEY_ALL_ACCESS):

12/43

Figure 34
The process is looking for a value called “SysHelper”, which doesn’t exist at this time:

Figure 35
The UuidCreate function is used to generate a new UUID (16 random bytes):

Figure 36
The process converts the UUID to a string using the UuidToStringW API:

Figure 37
A new directory based on the UUID is created by the malware:

Figure 38
The CopyFileW routine is utilized to copy the executable to a new file in the above directory:

13/43

Figure 39
The ransomware establishes persistence on the host by creating an entry called “SysHelper”
under the Run registry key, which will run the executable with the “–AutoStart” parameter
whenever the user logs on:

Figure 40
The binary denies “Everyone” to delete the folder created above using the icacls command,
as highlighted in figure 41:

Figure 41
A second persistence mechanism consists of creating a scheduled task (using COM objects)
that will run the ransomware every 5 minutes.

The malicious file initializes the COM library on the current thread using the CoInitialize
function:

Figure 42

14/43

We have observed that the implementation is similar to the one presented at
https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example–c—,
however we’ll dig deeper and explain how the assembly code looks like.

The CoInitializeSecurity routine is used to register and set the default security values for the
process (0x6 = RPC_C_AUTHN_LEVEL_PKT_PRIVACY and 0x3 =
RPC_C_IMP_LEVEL_IMPERSONATE):

Figure 43
The process creates an object with the CLSID {0F87369F-A4E5-4CFC-BD3E-
73E6154572DD}, which implements the Schedule.Service class for operating the Windows
Task Scheduler Service:

Figure 44
You can notice if you follow the C++ implementation mentioned above that in a case of a
function call such as p -> f(a,b), the assembly representation contains 3 parameters pushed
on the stack (because the pointer p is pushed as well). An example of such a call is
represented by the ITaskService::GetFolder method, which gets a folder of registered tasks:

Figure 45
A task called “Time Trigger Task” is deleted using the ITaskFolder::DeleteTask method:

Figure 46

https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--c---

15/43

The ITaskService::NewTask function is utilized to create an empty task definition object:

Figure 47
An example of a safe release when the pointer is no longer used is shown in figure 48:

Figure 48
The binary retrieves the registration information of the task (the description, the author, and
the date the task is registered) by calling the ITaskDefinition::get_RegistrationInfo method:

Figure 49
IRegistrationInfo::put_Author is used to set the author of the task to “Author Name”:

Figure 50
The ransomware retrieves the principal for the task (which provides the security credentials)
by calling the ITaskDefinition::get_Principal function:

Figure 51
The security logon type is set to 0x3 (TASK_LOGON_INTERACTIVE_TOKEN), which
means that the task will be run only in an existing interactive session:

Figure 52

16/43

ITaskDefinition::get_Settings is utilized to retrieve the settings that describe how the Task
Scheduler performs the task:

Figure 53
The file sets a Boolean value to 0xFFFFFFFF (VARIANT_TRUE) that indicates the Task
Scheduler can start the task at any time after its scheduled time has elapsed using the
ITaskSettings::put_StartWhenAvailable method:

Figure 54
The amount of time the Task Scheduler will wait for an idle condition to occur is set to 5
minutes via a function call to IIdleSettings::put_WaitTimeout:

Figure 55
ITaskDefinition::get_Triggers is used to get a collection of triggers used to start the task:

Figure 56
The executable creates a new trigger for the task using the ITriggerCollection::Create
method (0x1 = TASK_TRIGGER_TIME):

Figure 57
There is a QueryInterface call with a parameter set as CLSID {B45747E0-EBA7-4276-9F29-
85C5BB300006} – IID_ITimeTrigger:

17/43

Figure 58
The identifier for the trigger is set to “Trigger1” using the ITrigger::put_Id function:

Figure 59
The ransomware sets the date and time when the trigger is deactivated by calling the
ITrigger::put_EndBoundary method:

Figure 60
The system time is extracted via a call to the _time64 function:

Figure 61
The malware formats the system time into a human-readable form using strftime:

Figure 62
The malicious binary sets the date and time when the trigger is activated by calling the
ITrigger::put_StartBoundary method:

Figure 63
IActionCollection::Create is utilized to create and add a new action to the collection (0x0 =
TASK_ACTION_EXEC):

18/43

Figure 64
There is a QueryInterface call with a parameter set as CLSID {4c3d624d-fd6b-49a3-b9b7-
09cb3cd3f047} – IID_IExecAction:

Figure 65
The path of the executable is set to the copied file using the IExecAction::put_Path method:

Figure 66
The “–Task” argument is added by calling the IExecAction::put_Arguments function:

Figure 67
Finally, the malware uses the ITaskFolder::RegisterTaskDefinition method to create the task
called “Time Trigger Task” (0x6 = TASK_CREATE_OR_UPDATE):

Figure 68
Here is the newly created scheduled task in Windows Task Scheduler:

19/43

Figure 69
The ransomware launches itself with the following parameters “–Admin IsNotAutoStart
IsNotTask” (IsNotAutoStart = malware didn’t run based on the Run registry key, IsNotTask =
malware didn’t run based on the scheduled task):

Figure 70
“–Task“ parameter

We’ll only highlight different actions that are performed by the ransomware running with this
parameter without mentioning the same actions as in the case of running with no
parameters.

GetAdaptersInfo is utilized to retrieve adapter information (including the MAC address) for
the localhost:

Figure 71
The malware calls the CryptAcquireContextW API in order to obtain a handle to a particular
key container within a cryptographic service provider (0x1 = PROV_RSA_FULL and
0xF0000000 = CRYPT_VERIFYCONTEXT):

20/43

Figure 72
The binary creates a handle to a CSP hash object using the CryptCreateHash API (0x8003 =
CALG_MD5):

Figure 73
The ransomware hashes a buffer that contains the MAC address extracted above via a
function call to CryptHashData:

Figure 74
The MD5 hash value is extracted by calling the CryptGetHashParam routine (0x2 =
HP_HASHVAL):

Figure 75
A new thread is created by calling the CreateThread API:

Figure 76

21/43

Thread activity – sub_16E690

The RegOpenKeyExW function is used to open the
“Software\Microsoft\Windows\CurrentVersion” registry key (0x80000001 =
HKEY_CURRENT_USER and 0xF003F = KEY_ALL_ACCESS):

Figure 77
The process is looking for a value named “SysHelper”, which doesn’t exist at this time (this is
different from the one in figure 34):

Figure 78
The entry from above is created, and its value is set to 1 using the RegSetValueExW API:

Figure 79
The executable tries to locate a file called “bowsakkdestx.txt” in the “C:\Users\
<User>\AppData\Local” directory, which doesn’t exist on our machine:

Figure 80
There is a function call to InternetOpenW similar to the one presented in figure 23 (with the
same user agent). The binary performs a GET request to the C2 server securebiz[.]org with
the parameter pid = MD5(MAC address):

22/43

Figure 81
The response from the server is read using the InternetReadFile function:

Figure 82
The binary creates the file called “bowsakkdestx.txt” using fopen:

Figure 83
The file is populated using a function call to fwrite (the C2 server was down during our
analysis, so we emulated the network communications using FakeNet):

Figure 84
An example of a real response can be seen at https://app.any.run/tasks/900f626a-2bf6-48b2-
85f9-2328f2b2d0d2/ and contains 2 elements: “public_key” and “id”. The malware wants to
extract the “public_key” value from the response:

Figure 85

https://app.any.run/tasks/900f626a-2bf6-48b2-85f9-2328f2b2d0d2/

23/43

Even though the C2 server was down, the binary comes with a hard-coded RSA public key.
The file from above is deleted in any case:

Figure 86
Using multiple XOR operations with 0x80, the ransomware decrypts the RSA public key in
PKCS1 format, a victim ID, and a URL that leads to another malicious file at
http[:]//securebiz[.]org/files/1/build3.exe:

Figure 87
We continue to analyze the main thread. A mutex called “{1D6FC66E-D1F3-422C-8A53-
C0BBCF3D900D}” is created via a function call to CreateMutexA:

24/43

Figure 88
The malware decrypts the ransom note using the XOR operator:

Figure 89
The following information is also decrypted (a list of files to be skipped, a list of extensions to
be skipped, and a list of directories to be skipped):

ntuser.dat, ntuser.dat.LOG1, ntuser.dat.LOG2, ntuser.pol
.sys, .ini, .DLL, .dll, .blf, .bat, .lnk, .regtrans-ms
C:\SystemID\, C:\Users\Default User\, C:\Users\Public\, C:\Users\All Users\,
C:\Users\Default\, C:\Documents and Settings\, C:\ProgramData\, C:\Recovery\,
C:\System Volume Information\, C:\Users\%username%\A”ppData\Roaming\,
C:\Users\%username%\AppData\Local\, C:\Windows\, C:\PerfLogs\,
C:\ProgramData\Microsoft\, C:\ProgramData\Package Cache\, C:\Users\Public\,
C:\$Recycle.Bin\, C:\$WINDOWS.~BT\, C:\dell\, C:\Intel\, C:\MSOCache\, C:\Program
Files\, C:\Program Files (x86)\, C:\Games\, C:\Windows.old\
D:\Users\%username%\AppData\Roaming\, D:\Users\%username%\AppData\Local\,
D:\Windows\, D:\PerfLogs\, D:\ProgramData\Desktop\, D:\ProgramData\Microsoft\,
D:\ProgramData\Package Cache\, D:\Users\Public\, D:\$Recycle.Bin\,
D:\$WINDOWS.~BT\, D:\dell\, D:\Intel\, D:\MSOCache\, D:\Program Files\, D:\Program
Files (x86)\, D:\Games\
E:\Users\%username%\AppData\Roaming\, E:\Users\%username%\AppData\Local\,
E:\Windows\, E:\PerfLogs\, E:\ProgramData\Desktop\, E:\ProgramData\Microsoft\,
E:\ProgramData\Package Cache\, E:\Users\Public\, E:\$Recycle.Bin\,
E:\$WINDOWS.~BT\, E:\dell\, E:\Intel\, E:\MSOCache\, E:\Program Files\, E:\Program
Files (x86)\, E:\Games\
F:\Users\%username%\AppData\Roaming\, F:\Users\%username%\AppData\Local\,
F:\Windows\, F:\PerfLogs\, F:\ProgramData\Desktop\, F:\ProgramData\Microsoft\,
F:\Users\Public\, F:\$Recycle.Bin\, F:\$WINDOWS.~BT\, F:\dell\, F:\Intel\

25/43

The executable retrieves the user name associated with the current thread by calling the
GetUserNameW API:

Figure 90
The malicious process is looking for a file called “PersonalID.txt” that doesn’t exist at this
time:

Figure 91
CreateDirectoryW is utilized to create a directory called “C:\SystemID”:

Figure 92
The ransomware creates the file “C:\SystemID\PersonalID.txt” and writes the victim ID to it:

Figure 93
It’s very uncommon that the malware searches the system for a file called
“I:\5d2860c89d774.jpg” (0xC0000000 = GENERIC_READ | GENERIC_WRITE, 0x1 =
FILE_SHARE_READ, 0x3 = OPEN_EXISTING and 0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 94

26/43

LoadCursorW is used to load the standard arrow resource from the executable (0x7F00 =
IDC_ARROW):

Figure 95
The binary registers a window class using the RegisterClassExW routine:

Figure 96
CreateWindowExW is utilized to create a new window called “LPCWSTRszTitle” (0xCF0000
= WS_OVERLAPPEDWINDOW and 0x80000000 = CW_USEDEFAULT):

Figure 97
The window created earlier is hided by calling the ShowWindow routine (0x0 = SW_HIDE):

Figure 98
We need to analyze the window procedure defined in figure 96 (sub_16BAE0).

The malware uses the ntdllDefWindowProcW API in order to call the default window
procedure whenever a particular message needs to be processed (0x24 =
WM_GETMINMAXINFO, 0x81 = WM_NCCREATE, 0x83 = WM_NCCALCSIZE and 0x1 =
WM_CREATE):

27/43

Figure 99
GetLogicalDrives is used to retrieve a bitmask that represents the available disk drives:

Figure 100
The ransomware forces the system not to display the critical-error message box and sending
these errors to the calling process (0x1 = SEM_FAILCRITICALERRORS):

Figure 101
The file extracts the type of the drives by calling the GetDriveTypeA API and compares it with
2 (DRIVE_REMOVABLE), 3 (DRIVE_FIXED), 4 (DRIVE_REMOTE) and 6
(DRIVE_RAMDISK):

Figure 102
Two new threads are created using the CreateThread function:

28/43

Figure 103

Figure 104
The file retrieves a message from the message queue by calling the GetMessageW routine,
translates virtual-key messages into character messages using TranslateMessage, and
finally dispatches a message to a window procedure using DispatchMessageW:

Figure 105
Thread activity – sub_16FD80

The malware enumerates all resources on the network via a function call to
WNetOpenEnumW (0x2 = RESOURCE_GLOBALNET):

Figure 106
WNetEnumResourceW is utilized to further enumerate the network resources:

29/43

Figure 107
The message DBT_DEVICEREMOVECOMPLETE (“A device or piece of media has been
removed”) is sent to the window created earlier, and its procedure will handle it:

Figure 108
When the window procedure receives the message, it calls the GetComputerNameW API in
order to get the NetBIOS name of the local machine:

Figure 109
Thread activity – sub_16F130

The ransomware creates the ransom note called “_readme.txt” in every directory that it
encrypts:

Figure 110
The ransom note is populated by calling the WriteFile function, as shown in figure 111:

30/43

Figure 111
An example of a ransom note is highlighted below:

Figure 112
The files are enumerated using the FindFirstFileW and FindNextFileW APIs:

Figure 113
The directories mentioned under figure 89 will not be encrypted. The file extension is
extracted by calling the PathFindExtensionW routine:

Figure 114
The files and file extensions mentioned under figure 89 will be skipped. The ransomware
also avoids files that have the “.tisc” extension because this will be appended after the
encryption is complete:

31/43

Figure 115
Each targeted file is opened using the CreateFileW routine:

Figure 116
The file content is read by calling the ReadFile function:

Figure 117
There is a function call to CryptAcquireContextW (as in figure 72) and another one to
CryptCreateHash (as in figure 73). The malware hashes a buffer that contains the first 5
bytes from the targeted file and the RSA public key, as shown in figure 118:

Figure 118
The MD5 hash value is extracted by calling the CryptGetHashParam routine (0x2
= HP_HASHVAL):

32/43

Figure 119
The binary creates a new UUID (16 random bytes) by calling the UuidCreate API (which
internally uses CryptGenRandom):

Figure 120
The process converts the UUID to a string using the UuidToStringA API:

Figure 121
Based on the value generated above, the ransomware constructs the following Salsa20
matrix:

Figure 122

A snippet of the Salsa20 algorithm implemented by the malware is presented below:

33/43

Figure 123

The process encrypts the file content using the Salsa20 algorithm, however the first 5 bytes
from the targeted file are not encrypted. Based on the strings presented in figure 124 and our
analysis of the RSA implementation, we believe that the malware developers have included
the OpenSSL code found at https://github.com/openssl/openssl (or similar code taken from
other projects):

https://github.com/openssl/openssl

34/43

Figure 124

The binary encrypts the UUID generated before using the RSA public key embedded in the
file:

Figure 125
The encrypted content is written to the file using WriteFile, as shown below:

35/43

Figure 126
The malicious binary writes the encrypted UUID using the same API:

Figure 127
The offline ID is also added to the encrypted file:

Figure 128
The value “{36A698B9-D67C-4E07-BE82-0EC5B14B4DF5}” is also added to the encrypted
file:

Figure 129
The encrypted file extension is changed to “.tisc” by the ransomware:

36/43

Figure 130
The encrypted file has the following structure that highlights different elements:

Figure 131
“–AutoStart“ parameter

The activity is similar to the case discussed above.

“–Admin IsNotAutoStart IsNotTask“ parameters

The binary establishes a connection to the service control manager by calling the
OpenSCManagerW routine (0x1 = SC_MANAGER_CONNECT):

Figure 132
A service called “MYSQL” is opened by the process via a function call to OpenServiceW
(0x20 = SERVICE_STOP):

37/43

Figure 133
Whether the service would exist on a host, the ransomware would stop it using the
ControlService API:

Figure 134

The file decrypts another URL that will be used to download more malicious files,
http[:]//znpst[.]top/dl/build2.exe:

Figure 135

A new thread is created by calling the CreateThread function:

Figure 136
Thread activity – StartAddress (sub_16DBD0)

UuidCreate is utilized to generate a new UUID:

38/43

Figure 137
The UuidToStringA routine is used to convert the UUID to a string:

Figure 138
The malicious process creates a new directory based on the UUID generated above:

Figure 139
The binary performs a GET request to http[:]//znpst[.]top/dl/build2.exe using
InternetOpenUrlA:

Figure 140
According to the analysis from
https://any.run/report/cd6bf2f554a9aa446cb36d28e374e1010268cbda8f55eb0043fbe6e2724
128be/152e55c2-5e8f-4fe2-a764-7876ba00f03e, the above executable is a malware called
Ursnif (banking Trojan).

The status code is extracted by calling the HttpQueryInfoW routine (0x20000013 =
HTTP_QUERY_FLAG_NUMBER | HTTP_QUERY_STATUS_CODE):

Figure 141

https://any.run/report/cd6bf2f554a9aa446cb36d28e374e1010268cbda8f55eb0043fbe6e2724128be/152e55c2-5e8f-4fe2-a764-7876ba00f03e

39/43

A file called “build2.exe” is created in the new directory:

Figure 142
The InternetReadFile routine is utilized to read the executable from the server, as displayed
in figure 143:

Figure 143
ShellExecuteA is used to run the newly created executable:

Figure 144

Figure 145
The binary performs a GET request to http[:]//securebiz[.]org/files/1/build3.exe using
InternetOpenUrlA:

40/43

Figure 146
According to multiple online resources, the above file is supposed to be an infamous info-
stealer called Vidar. The process of reading data from the server, creating the malicious file,
etc. is the same as above and isn’t explained again.

For completeness, we will also provide details about the other parameters that can be used,
as displayed at https://app.any.run/tasks/635cd7df-e4b7-4d1a-a937-e8d8599e6c72/.

“–ForNetRes “jwvfPPgZoQyg6Q6he8weP7iDsH9FKc74ICjysAt2″
r77yXePcnmrctJPWrZCcbJgUlAtOa1FC9Na710t1 IsNotAutoStart IsNotTask”
parameters

The binary creates a mutex called “{FBB4BCC6-05C7-4ADD-B67B-A98A697323C1}” using
the CreateMutexA API:

Figure 147
According to online sources, the first parameter can be considered as a Key and the second
one as a Personal ID. The malware performs a hashing operation (MD5) on the Key:

Figure 148
The hash value is extracted using the CryptGetHashParam function (0x2 = HP_HASHVAL):

Figure 149
The execution flow is similar to the one starting with figure 90 and will not be reiterated.

https://app.any.run/tasks/635cd7df-e4b7-4d1a-a937-e8d8599e6c72/

41/43

“–Service 4904 “jwvfPPgZoQyg6Q6he8weP7iDsH9FKc74ICjysAt2”
r77yXePcnmrctJPWrZCcbJgUlAtOa1FC9Na710t1” parameters

The above value represents the parent process ID, which is converted from string to a long
integer value:

Figure 150
The ransomware opens the local process object using the OpenProcess routine (0x100000 =
SYNCHRONIZE):

Figure 151
After the parent process enters the signaled state, the file dispatches incoming sent
messages, checks for posted messages, and then retrieves the messages:

Figure 152
The malicious binary retrieves the exit code of the current process and then kills itself using
TerminateProcess:

Figure 153

Finally, we describe the case when the country code belongs to the following list: “RU”, “BY”,
“UA”, “AZ”, “AM”, “TJ”, “KZ”, “KG”, “UZ” and “SY”.

CreateMutexA is utilized to create a mutex called “{FBB4BCC6-05C7-4ADD-B67B-
A98A697323C1}”:

42/43

Figure 154
A batch file called “delself.bat” is created in the %TEMP% directory:

Figure 155
The above file is populated using the WriteFile API, and its content is displayed below:

Figure 156

Figure 157

After the batch file finishes its execution, the malicious file and the script are deleted:

Figure 158
References

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/, https://docs.microsoft.com/en-
us/windows/win32/taskschd/time-trigger-example–c—

https://docs.microsoft.com/en-us/windows/win32/api/
https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--c---

43/43

Fakenet: https://github.com/fireeye/flare-fakenet-ng

Any.run: https://app.any.run/tasks/635cd7df-e4b7-4d1a-a937-e8d8599e6c72/

VirusTotal:
https://www.virustotal.com/gui/file/4380c45fd46d1a63cffe4d37cf33b0710330a766b7700af86
020a936cdd09cbe

MalwareBazaar:
https://bazaar.abuse.ch/sample/4380c45fd46d1a63cffe4d37cf33b0710330a766b7700af8602
0a936cdd09cbe/

OpenSSL: https://github.com/openssl/openssl

INDICATORS OF COMPROMISE

C2 domains:

securebiz[.]org

znpst[.]top

SHA256: 4380c45fd46d1a63cffe4d37cf33b0710330a766b7700af86020a936cdd09cbe

Scheduled Task: “Time Trigger Task”

Registry key:
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\SysHelper

User-agent: “Microsoft Internet Explorer”

PDB paths:

“C:\xudihiguhe\jegovicatusoca\jijetogez\winucet\xusev\kucor.pdb”
“e:\doc\my work (c++)_git\encryption\release\encrypt_win_api.pdb”

URLs:

http[:]//securebiz[.]org/fhsgtsspen6/get.php
http[:]//securebiz.org/files/1/build3.exe
http[:]//znpst.top/dl/build2.exe
https[:]//api.2ip.ua/geo.json

https://github.com/fireeye/flare-fakenet-ng
https://app.any.run/tasks/635cd7df-e4b7-4d1a-a937-e8d8599e6c72/
https://www.virustotal.com/gui/file/4380c45fd46d1a63cffe4d37cf33b0710330a766b7700af86020a936cdd09cbe
https://bazaar.abuse.ch/sample/4380c45fd46d1a63cffe4d37cf33b0710330a766b7700af86020a936cdd09cbe/
https://github.com/openssl/openssl

