Wslink: Unique and undocumented malicious loader that
runs as a server

October 27, 2021

There are no code, functionality or operational similarities to suggest that this is a tool from
a known threat actor

Vladislav Hréka
27 Oct 2021 - 11:30AM

There are no code, functionality or operational similarities to suggest that this is a tool from
a known threat actor

1/9

https://www.welivesecurity.com/2021/10/27/wslink-unique-undocumented-malicious-loader-runs-server/
https://www.welivesecurity.com/author/vhrcka/
https://www.welivesecurity.com/author/vhrcka/

ESET researchers have discovered a unique and previously undescribed loader for
Windows binaries that, unlike other such loaders, runs as a server and executes received
modules in memory. We have named this new malware Wslink after one of its DLLs.

We have seen only a few hits in our telemetry in the past two years, with detections in
Central Europe, North America, and the Middle East. The initial compromise vector is not
known; most of the samples are packed with MPRESS and some parts of the code are
virtualized. Unfortunately, so far we have been unable to obtain any of the modules it is
supposed to receive. There are no code, functionality or operational similarities that suggest
this is likely to be a tool from a known threat actor group.

The following sections contain analysis of the loader and our own implementation of its
client, which was initially made to experiment with detection methods. This client’s source
code might be of interest to beginners in malware analysis — it shows how one can reuse
and interact with existing functions of previously analyzed malware. The very analysis could
also serve as an informative resource documenting this threat for blue teamers.

Technical analysis

Wslink runs as a service and listens on all network interfaces on the port specified in the
ServicePort registry value of the service’s Parameters key. The preceding component that
registers the Wslink service is not known. Figure 1 depicts the code accepting incoming
connections to that port.

2/9

do
{
if { select wrap(&in sock, 1u) == -1)}
i
if { WSAGetLastErrorf) l= WSAETIMEDOUT)
break;

by

else

1

addrlen = sizeof({sockaddr);
client sock = accept{in_sock, 8&addr, &addrlen);
if { client sock l= -1ie4)

i
h = CreateThread(®igd, Bied, connection thread, client =ock, B, @i&4);

if (k)

{
CloseHandle(h);

)

alse

{
shutdown(client sock, SD _BOTH);
closesocket(client sock];

b
i
By
3

while [serwice state == 2 };

Figure 1. Hex-Rays decompilation of the loop accepting incoming connections

Accepting a connection is followed by an RSA handshake with a hardcoded 2048-bit public
key to securely exchange both the key and IV to be used for 256-bit AES in CBC mode (see
Figure 2). The encrypted module is subsequently received with a unique identifier —
signature — and an additional key for its decryption.

Interestingly, the most recently received encrypted module with its signature is stored
globally, making it available to all clients. One can save traffic this way — transmit only the
key if the signature of the module to be loaded matches the previous one.

3/9

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-1.-Hex-Rays-decompilation-of-the-loop-accepting-incoming-connections.jpg

LF [lppeewtric recsler_decrpptl tamt, = A
Elarn BLAag

a HiA |
whlla § Proki CaiaE [1 ss Ld=.laat sigeaturs] T 1]
{
Eq |: s T I | :
o= recalve ko)
I
iF [|s—rtrlc_ recelve deeepei| ¢ Wldr, madpla Len, 4§]

P Dt s
w Bdf mEddid L

LF | cEdr-msdads L - 1) + S=FELFFFEE |

ratuErn SR
LF | Lér_srcrypisd _modulas poir |
1

Fraw ldr.encrypbed_ =l a_pir-bi;

w L sl e 4=

1L
]
e ascrppsed madals poe oo alloc el 1
if | Leyeewirle recsles decepprcl L wi, Ldr_srcrypbsd medules ptr, Lldr.moduils laa] 3
i

fras_globsl wers};

rabarn ELE;

racal gLy
Figure 2. Hex-Rays decompilation of receiving the module and its signature

As seen in Figure 3, the decrypted module, which is a regular PE file, is loaded into memory
using the MemoryModule library and its first export is finally executed. The functions for
communication, socket, key and IV are passed in a parameter to the export, enabling the
module to exchange messages over the already established connection.

[#] = 1

11 = Syl e i]

[7] = spemebels revelca_des eypip

I¥] = wrmacrls_ racelva e romr_derawi o Lesgis:
[d] = spemrlels mdpd seed dowed)

%] = spmperls rovplg das el gl
L8] = Firdi_ B
e vl i ra vt 1y 1j

ERREE - FL TN

i il |
iFf g il e s | Rreader . Dakald rm o] [HEEF EINIT MO0y _IRTEe _PAFCET |.Glam
e a- . ot a] e B et TGl _RTE B Noiy R e SRS U] s | ke r-. !
LS DFLD - I ™ JL r el laplely FESF_ INFTET_COFECTIEF, FlesherTd | P Glee]| .
2
hl =" L, = AP Il U DR PR, R 2. = 21
il 3 1 . L =
i L™ 14 *® 13
1 &E 1 v ol [_THES MR CIEEYEr, dddragn DT e tlmsl 1110
i H
I v I
A e =iy K e
-
1
i
i
HELS - AL
dmlaik gl lres duilal i
u 1y
|
1
HiEe

Figure 3. Hex-Rays decompilation of code executing the received module in memory

4/9

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-2.-Hex-Rays-decompilation-of-receiving-the-module-and-its-signature.jpg
https://github.com/fancycode/MemoryModule
https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-3.-Hex-Rays-decompilation-of-code-executing-the-received-module-in-memory.jpg

Implementation of the client

Our own implementation of a Wslink client, described below, simply establishes a
connection with a modified Wslink server and sends a module that is then decrypted and
executed. As our client cannot know the private key matching the public key in any given
Wslink server instance, we produced our own key pair and modified the server executable
with the public key from that pair and used the private key in our Wslink client
implementation.

This client enabled us to reproduce Wslink’'s communication and search for unique patterns;
it additionally confirmed our findings, because we could mimic its behavior.

Initially some functions for sending/receiving messages are obtained from the original
sample (see Figure 4) — we can use them right away and do not have to reimplement them
later.

rel L Lo B I LN R AR im el Ere L Ly _ Rl] FEETTPS FE A]

Figure 4. The code for loading functions from a Wslink’s sample

Subsequently, our client reads the private RSA key to be used from a file and a connection
to the specified IP and port is established. It is expected that an instance of Wslink already
listens on the supplied address and port. Naturally, its embedded public key must also be
replaced with one whose private key is known.

Our client and the Wslink server continue by performing the handshake that exchanges the
key and IV to be used for AES encryption. This consists of three steps, as seen in Figure 5:
sending a client hello, receiving the symmetric key with 1V, and sending them back to verify
successful decryption. From reversing the Wslink binary we learned that the only constraint
of the hello message, apart from size 240 bytes, is that the second byte must be zero, so
we just set it to all zeroes.

5/9

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-4.-The-code-for-loading-functions-from-a-Wslink%E2%80%99s-sample.jpg

eI | P PR A el S F SIF =l ™ <Al m | R DH ESE
mer wedleiwrile_lmm
Ber JERTPETEA M | A R 1
wmre] ilbe. P Rells_liw
i = - sreca bl pimae rm my Os

e en miee - e meiveer smeppsiinlis Dae beile r-nnr:i::-.h- 1es- Pl PRCET Rl BN
B RN PERE AR RNl LEi.a RNE Ed mom B LRl E
[

[P] |-||1|.r|_-.r-| mdsim =
BEE | TR] | S R
ruil - vew | e et et ek mme reior_ e . sl et e S L
s B

s n g rerr = B cvse desrrre miaoar e rmervied seerre. Sewcrries soewss . ewe. HUCFECRD P DR
[T LEE Y FRL BiE
B

[} el § 0 0 6 el BT " B LT R] mluﬂl' - I|HM-JHI

e L T s SR T Loy Ty
T . R e L

il b T bk e

Bl T S T O T Y

b d L FaH L ETRYEA, EEDEH el 1] ST HA . CHEETTHS AT O+ . Y _FLFR
Tl e rrearereerd_sewres . sewm_ e paae . @ = _HECE

B

Figure 5. Our client’s code for the RSA handshake

The final part is sending the module. As one can see in Figure 6, it consists of a few simple
steps:

e receiving the signature of the previously loaded module — we decided not to do
anything with it in our implementation, as it was not important for us

e sending a hardcoded signature of the module

 reading the module from a file, encrypting it (see Figure 7) and sending it

» sending the encryption key of the module

Lnr End Eeuld (Frruct WEllEr fOACLOnE " EEE, SCCEST LA CORE&RET Ent|
ALi abl Enlelicl® il s il
recplre prpoafure af Fhe peermiamly Jordsf meaale
wRf-pyEmaTric recrler deaccypsjoor. Svnld o dprey meod. mamecdiperer madi il i
I a: - T -

S ampd e adondblaee & Dl nifpls o Be oaosd
wpf- rpyErmnric_erescyRt sereliemt. podhule g, riclaniscdeldes opglbo
o:

LR T T T
sl v pedade Fool Fela
‘gt _moduln e 1 |

4 i

A e el e
waf - rpyemehrio_eoocyet_perdd oot roidEtl & Crows leml o rloeof Teoem Lenil] 0
b L i M-E St HE
I o:

Eaf- i fie_tnriVal S8l (onl, wfm.@cia, e el
dremis jwmw dntaj
L [H

Al Lo siifjiplios W=jf (o B R e
‘ma - rayemeetcie_eorcyrk sl lemt: ool _kop. ey _@emi| |
framl s |wnw. dueal)
L a:
1
FieE | L) fae. Balfi|
am]-

6/9

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-5.-Our-client%E2%80%99s-code-for-the-RSA-handshake.jpg
https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-6.-Our-client%E2%80%99s-code-for-sending-the-module.jpg

Figure 6. Our client’s code for sending the module

int get_module (struct wslink wodule® wsm) |
FILE *f = fopen("module.dll™, "ch'™):

I

return 0O;

'

fseek(f, 0, SEEE END):
long fsize = ftell(f):
fseek(f, 0, SEEEK SET):

vold *data = malloc(fsize):
fread(data, 1, fsize, £):
folose (£)

void® enc dats = malloc(fsize + (iv_len - fsize % iv_len)|):
int enc size = aes_encrypt (data, fsize, module key, null iv, enc data):
free(data) :

wam—->data = enc data;

wam—>1len = enc Size:
e e

Figure 7. Our client’s code for loading and encrypting the module

The full source code for our client is available in our WslinkClient GitHub repository. Note
that the code still requires a significant amount of work to be usable for malicious purposes
and creating another loader from scratch would be easier.

Conclusion

Wslink is a simple yet remarkable loader that, unlike those we usually see, runs as a server
and executes received modules in memory.

Interestingly, the modules reuse the loader’s functions for communication, keys and
sockets; hence they do not have to initiate new outbound connections. Wslink additionally
features a well-developed cryptographic protocol to protect the exchanged data.

loCs

Samples

SHA-1 ESET detection name

01257C3669179F754489F92947FBEOB57AEAES73 Win64/TrojanDownloader.Wslink

E6F36C66729A151F4F60F54012F242736BA24862

39C4DES564352D7B6390BFD50B28AA9461C93FB32

MITRE ATT&CK techniques

7/9

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-7.-Our-client%E2%80%99s-code-for-loading-and-encrypting-the-module.jpg
https://github.com/eset/wslink-client

This table was built using version 9 of the ATT&CK framework.

Tactic ID Name Description

Enterprise T1587.001 Develop Capabilities: Wslink is a custom PE
Malware loader.

Execution T1129 Shared Modules Wslink loads and executes

DLLs in memory.

T1569.002 System Services: Wslink runs as a
Service Execution service.

Obfuscated T11027.002 Obfuscated Files or Wslink is packed with
Files or Information: Software MPRESS and its code
Information Packing might be virtualized.
Command 11573.001 Encrypted Channel: Wslink encrypts traffic with
and Control Symmetric AES.
Cryptography

T1573.002 Encrypted Wslink exchanges a

Channel: symmetric key with

Asymmetric RSA.

Cryptography

THREAT

INTELLIGENCE

27 Oct 2021 - 11:30AM

Sign up to receive an email update whenever a new article is published in
our Ukraine Crisis — Digital Security Resource Center

8/9

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/techniques/T1587/001/
https://attack.mitre.org/techniques/T1129/
https://attack.mitre.org/techniques/T1569/002/
https://attack.mitre.org/techniques/T1027/002/
https://attack.mitre.org/techniques/T1573/001/
https://attack.mitre.org/techniques/T1573/002/
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=wslink-unique-undocumented-malicious-loader-runs-server/
https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

Newsletter

Discussion

9/9

