
1/10

Code similarity analysis with r2diaphora
cybersecurity.att.com/blogs/labs-research/code-similarity-analysis-with-r2diaphora

1. AT&T Cybersecurity
2. Blog

October 27, 2021 | Fernando Dominguez

Executive summary

Binary diffing, a technique for comparing binaries, can be a powerful tool to facilitate malware
analysis and perform malware family attribution. This blog post describes how AT&T Alien
Labs is leveraging binary diffing and code analysis to reduce reverse-engineering time and
generate threat intelligence.

Using binary diffing for analysis is particularly effective in the IoT malware world, as most
malware threats are variants of open-source malware families produced by a wide range of
threat actors. Generating and maintaining static signatures for variations on IoT malware is
tedious, as the assembly code often changes across variants and architectures and text
strings are subject to modification. For this reason, AT&T Alien Labs created a new open-
source tool, r2diaphora, to port Diaphora as a plugin for Radare2, and included some use
cases in this blog.

What is binary diffing?

https://cybersecurity.att.com/blogs/labs-research/code-similarity-analysis-with-r2diaphora
https://cybersecurity.att.com/
https://cybersecurity.att.com/blogs
https://cybersecurity.att.com/blogs/author/fernando-dominguez
https://medium.com/malware-buddy/reverse-engineering-tips-binary-diffing-17760bd89f39

2/10

Binary diffing (or program diffing) is a process where two files are compared at instruction
level, looking for differences in code. Threat actors can easily transform the assembly code
for a program without modifying its actual behaviour, so the typical “line-by-line” diffing is not
good enough when looking at malware - a more advanced approach is needed.

There are several binary diffing tools publicly available, such as Diaphora, BinDiff, and
DarunGrim. Alien Labs is using Diaphora, as we believe it is the most advanced of all the
available options. Furthermore, Diaphora has the added benefit of being open source,
allowing Alien Labs to modify it for our needs.

How can binary diffing be employed to identify malware?

Diaphora works by analyzing each function present in the binary and extracting a set of
features from each analyzed function. These features are later used to compare functions
across binaries and find matches. If instead of directly comparing features, we leverage them
to build a database of malicious functions (indicators) for identification purposes, we can then
begin analyzing incoming binaries and try to find matches amongst their functions when
comparing to the indicator database.

If enough matches are found in the analyzed binaries, we can safely assume the analyzed
sample is a malware sample. We can also note which malware family the functions belong to
in the indicator database, thus obtaining family attribution for the analyzed samples.

Porting Diaphora to Radare2

Diaphora works as an IDA Pro plugin. In order to work, it needs a valid IDA license and,
consequently, valid Hex-Rays licenses for each CPU architecture you may want to
decompile. As this cost of these licenses is quite high, Alien Labs looked for a cheaper
alternative, so the community could leverage it.

As such, we decided to port the existing Diaphora to the Radare2 disassembly framework.
The ported version of Diaphora, named r2diaphora, is also open source and available here.

Radare2 (r2) is an open-source disassembly framework that supports a very wide range of
CPU architectures. It also bundles a capable decompiler and supports the Ghidra decompiler
as a plugin. As such, r2 is well suited for our objective of porting Diaphora to an open-source
disassembler.

Additional changes made to the original Diaphora included swapping the SQLite3 databases
for MySQL. This change was performed for the malware attribution process described
previously, as more than one analyst would be writing to the indicator database. With
multiple analysts writing to the database, the SQLite database would need to be shared

https://github.com/joxeankoret/diaphora
https://www.zynamics.com/bindiff.html
http://www.darungrim.org/
https://github.com/joxeankoret/diaphora
https://github.com/radareorg/radare2
https://github.com/FernandoDoming/r2diaphora

3/10

across team members and allow parallel write/read operations. SQLite databases are not
made for this kind of usage, so the Alien Labs team swapped it for another database engine
better designed for the task.

Installation

As r2diaphora uses Radare2 and MySQL they need to be set-up prior to its usage. Radare2
should be installed locally, while the MySQL server can be remote or local. Once the
environment is set up you can install it with pip install r2diaphora. This pip package installs
three command line utilities: r2diaphora, r2diaphora-db and r2diaphora-bulk.

r2diaphora: The main command line utility, analyzes and compares files.
r2diaphora-db: Performs database management and configuration.
r2diaphora-bulk: Analyzes binaries in batches.

Further usage options can be obtained with the -h / --help command line option in each of
them.

Once the pip package is successfully installed you can input your database credentials with
r2diaphora-db config -u -p -hs . If you are using bash or a similar shell and do not want your
database password to be saved in the shell history, precede the command with a space.

Finally, if you want to use the r2ghidra decompiler, install it with the r2pm -ci r2ghidra
command, if it is not installed already.

Usage

As stated previously, r2ghidra lists all available options if executed with the -h flag. Currently,
they are the following:

As an example, we can execute r2diaphora on some test IoT samples. You can find file
hashes in the Associated Indicators appendix.

4/10

First test - comparing to Sakura (a Gafgyt variant) samples with the same architecture:

r2diaphora 562b4c9a40f9c88ab84ac4ffd0deacd219595ab83ed23a458c5f492594a3a7ef
770363f9fd334c3f3c4ba0e05a2a0d4701f56a629b09365dfe874b2a277f4416

Figure 1. r2diaphora output for Sakura samples with the same architecture.

Observe how r2diaphora could identify the similarities between the two files. The system
managed to find 40 matches out of 56 possible (71%). Furthermore, the similarity ratios for
the matched functions are close to 1.0, indicating a very close resemblance in the matched
functions. Additionally, the results point towards true positive matches since the matched
functions have the same name and number of basic blocks.

Second test - comparing Sakura samples with different architectures:

 r2diaphora 17c62e0cf77dc4341809afceb1c8395d67ca75b2a2c020bddf39cca629222161
6ce1739788b286cc539a9f24ef8c6488e11f42606189a7aa267742db90f7b18d

5/10

Figure 2. r2diaphora output for Sakura samples with different architecture.

In this case, we see how the number of matches has decreased from the previous test. This
was expected as it is harder to match functions across different architectures. The similarity
ratios have also decreased as the assembly code differs in all the compared functions. Still,
r2diaphora recognized many similarities between both samples and identified correct
matches across the compared files.

Third test - comparing a Sakura sample to a Yakuza (another Gafgyt variant) sample, both
samples having different architectures:

$ r2diaphora
sakura/594a6b2c1e9beac3ad5f84458b71c1b7ec05ee0239808c9a63bc901040e413a3
yakuza/91392f5dbbfd4ad142956983208a484b91ac5e84c4f9a9fcb530a9b085644c93

6/10

Figure 3. r2diaphora output for Sakura and Yakuza samples with different architecture.

In this case, observe how the number of matches have decreased even further while the
ratios have been maintained mostly steady. This is due to the samples being different
variants that perform different modifications over the base Gafgyt source code.

It is also notable that the processCmd function has been able to be matched with a low ratio.
processCmd is the function that parses the received commands from the Command &
Control server. The low ratio in this match is due to the variants being able to handle different
commands, hence their implementation being different. However, the system was able to
match it due to a common constant present in both functions.

Conclusion

Code similarity analysis is a powerful tool that can be leveraged to identify and attribute
malware. While not flawless, program diffing can bypass many of the weaknesses of static
signatures and thus could be used in conjunction with traditional detection methods to build a
more robust detection pipeline.

Appendix

Associated Indicators (IOCs)

7/10

TYPE INDICATOR DESCRIPTION

SHA256
132948bef56cc5b4d0e435f33e26632264d27ce7d61eba85cf3830fdf7c
b8056

Sakura
sample, Arch:
ARM, EABI4

SHA256
136dbd3cfa947f286b972af1e389b2a44138c0013aa8060d20c247b6bcf
dd88c

Sakura
sample, Arch:
Intel 80386

SHA256
17c62e0cf77dc4341809afceb1c8395d67ca75b2a2c020bddf39cca6292
22161

Sakura
sample, Arch:
ARM, EABI4

SHA256
19e0f329b5d8689b14d901b9b65c8d4fb28016360f45b3dfcec17e8340e
6411e

Sakura
sample, Arch:
Motorola m68k

SHA256
4cc11ffb3681ebced1f9d88e71b70a87e6d4498abca823245c118afead6
7b6a5

Sakura
sample, Arch:
MIPS, MIPS-I
version 1

SHA256
562b4c9a40f9c88ab84ac4ffd0deacd219595ab83ed23a458c5f492594a
3a7ef

Sakura
sample, Arch:
ARM, EABI4

SHA256
594a6b2c1e9beac3ad5f84458b71c1b7ec05ee0239808c9a63bc901040e
413a3

Sakura
sample, Arch:
x86-64

SHA256
5fec87479a8d2fa7f0ed7c8f6ba76eeea9e86c45123173d2230149a55dc
d760d

Sakura
sample, Arch:
MIPS, MIPS-I
version 1

SHA256
603d14671f97d12db879cc1c7cd6abfa278bf46431ac73aeb6b3a4c4c2b
16b9f

Sakura
sample, Arch:
x86-64

8/10

SHA256
6b128a64a497eb123f03b77ef45e99e856282dc9620dc26ab38998627a8
f3216

Sakura
sample, Arch:
Renesas SH

SHA256
6ce1739788b286cc539a9f24ef8c6488e11f42606189a7aa267742db90f
7b18d

Sakura
sample, Arch:
Intel 80386

SHA256
770363f9fd334c3f3c4ba0e05a2a0d4701f56a629b09365dfe874b2a277
f4416

Sakura
sample, Arch:
ARM, version 1

SHA256
7c8ba5f88b1c4689a64652f0b8f5e3922e83f9f73c7e165f3213de27c5f
b4d05

Sakura
sample, Arch:
PowerPC

SHA256
8090c3a1a930849df42f7f796d42e0211344e709a5ac15c2b4aca8ca41d
e2cd3

Sakura
sample, Arch:
Intel 80386

SHA256
94a279397b8c19ec7def169884a096d4f85ce0e21ff9df0be3ce264ef45
65ea7

Sakura
sample, Arch:
x86-64

SHA256
96bb3e5209e083544ea6a78bc6fc4ebc456e135a786d747718d936af3b0
63298

Sakura
sample, Arch:
ARM, EABI4

SHA256
a079dfd60b55a7d74dd32d49a984bea43665b8b225beceae5b272944889
217f6

Sakura
sample, Arch:
MIPS, MIPS-I
version 1

SHA256
b6c2f02b1bed62a6b845d5f13d9003f5aa3f6d0da3e62fa48d982287245
3de10

Sakura
sample, Arch:
Renesas SH

SHA256
cef15aa60dc2c09fe117e37e07399f0ef89dca9f930ce13ac1e29f8cf63
d9a31

Sakura
sample, Arch:
Motorola m68k

9/10

SHA256
e984334bbdd1179aadbde949f7c1b0fb02b6c18cb4a56d146150853b18a
dfa79

Sakura
sample, Arch:
MIPS, MIPS-I
version 1

SHA256
2858982408bf1664b622e830ad83b871749608a7533e94672153ff90caa
658a9

Yakuza
sample, Arch:
ARM, EABI4

SHA256
2b7262cae9e192fa7921f3ec02e0f924b32de3d418842fdad9a51603589
a54c7

Yakuza
sample, Arch:
Intel 80386

SHA256
2faf7437c769abd92347d6f0a77f001523ec41c02d2bf12e3cebf5b9504
57ba3

Yakuza
sample, Arch:
Intel 80386

SHA256
4fc23e8409becb028997c2f0f2041e2dc853018b71e009e3d66f33876d5
d4e99

Yakuza
sample, Arch:
Renesas SH

SHA256
6554d5edb401e2def2ef9fbb82b591351d3c8261ce0a20c431470f1c68f
a3aea

Yakuza
sample, Arch:
ARM, version 1

SHA256
8005db9431013f094a2114046679ab971e62a8776639d6c2903fcc5d2fe
8065c

Yakuza
sample, Arch:
x86-64

SHA256
91392f5dbbfd4ad142956983208a484b91ac5e84c4f9a9fcb530a9b0856
44c93

Yakuza
sample, Arch:
ARM, version 1

SHA256
b8aadb66183196868a9ff20bebd9c289fbfe2985fb409743bb0d0fea513
e9caf

Yakuza
sample, Arch:
ARM, EABI4

SHA256
d4f223fc5944bc06e12c675f0664509eeab527abc03cdd8c2fbd43947cc
6cbab

Yakuza
sample, Arch:
ARM, version 1

10/10

SHA256
f64b5f6dd7f222b7568bba9e05caa52f9e4186f9ba4856c8bf1274f4c77
c653c

Yakuza
sample, Arch:
Intel 80386

Share this with others

Tags: alien labs, code analysis, r2diaphora

https://cybersecurity.att.com/blogs/tag/alien+labs
https://cybersecurity.att.com/blogs/tag/code+analysis
https://cybersecurity.att.com/blogs/tag/r2diaphora

