
1/27

Detecting CONTI CobaltStrike Lateral Movement
Techniques - Part 1

unh4ck.com/detection-engineering-and-threat-hunting/lateral-movement/detecting-conti-cobaltstrike-lateral-movement-
techniques-part-1

Detecting CONTI CobaltStrike Lateral Movement Techniques - Part 1

Detection opportunities on lateral movement techniques used by CONTI ransomware group
using CobaltStrike.

Introduction:

In an attempt to contribute to the defensive capabilities of security teams regarding the
increase of CobaltStrike usage by threat actors (TA) and in a joined effort with
@MichalKoczwara, a series of articles will be released on CobaltStrike's TTP detections
related to the CONTI leak.
For the first part of this blog post, I will cover detection opportunities for lateral movement
(LM) techniques used by the TA CONTI via CobaltStrike. Keep in mind that I tried to boil it
down to analytics that can be used for other lateral movements variation and not just specific
to CONTI Group or CobaltStrike (CS).

Definition:

MITRE ATT&CK defines lateral movement as :

Lateral Movement consists of techniques that adversaries use to enter and control
remote systems on a network. Following through on their primary objective often
requires exploring the network to find their target and subsequently gaining access to
it. Reaching their objective often involves pivoting through multiple systems and
accounts to gain. Adversaries might install their own remote access tools to
accomplish Lateral Movement or use legitimate credentials with native network and
operating system tools, which may be stealthier.

Looking in the CobaltStrike documentation we can find some built-in modules for Lateral
Movement defined in the table bellow which were included in the leaked documentation:

Jump Module

Arch

Description

https://www.unh4ck.com/detection-engineering-and-threat-hunting/lateral-movement/detecting-conti-cobaltstrike-lateral-movement-techniques-part-1
https://twitter.com/MichalKoczwara

2/27

psexec

x86

Use a service to run a Service EXE artifact

psexec64

x64

Use a service to run a Service EXE artifact

psexec_psh

x86

Use a service to run a PowerShell one-liner

winrm

x86

Run a PowerShell script via WinRM

winrm64

x64

Run a PowerShell script via WinRM

Other capabilities are used by the group like Remote-Exec command, PTH module, RDP
and SHELL command to remotely execute commands using WMIC.EXE utility. I will go
through these TTPs in the second part.

Remote-Exec Module

Description

psexec

Remote execute via Service Control Manager

winrm

Remote execute via WinRM (PowerShell)

wmi

Remote execute via WMI (PowerShell)

3/27

Simulation Setup

CobaltStrike

Zeek

Elastic Stack (Winlogbeat + Filebeat)

Sysmon Configuration Blacksmith OTRF
VICTIM Windows 10 user machine (Initial Access)

DC_ATLAS Domain Controller Windows Server 2016 (Lateral Movement Target)

T1021.006 Remote Services: Windows Remote Management

A primer to WinRM

WinRM is the Microsoft implementation of WS-Management protocol which is an open
source standard for constructing XML messages following the standards of Simple Object
Access Protocol (SOAP) messages.

This great blog explain in simple steps a typical WinRM based conversation for invoking
commands:

1. 1.
Send a Create Shell message and get the shell id from the response

2. 2.
 Create a command in the shell sending the command and any arguments and grab the
command id from the response

3. 3.
 Send a request for output on the command id which may return streams (stdout and/or
stderr) containing base64 encoded text.

4. 4.
Keep requesting output until the command state is done and examine the exit code.

5. 5.
Send a command termination signal

6. 6.
Send a delete shell message

I will go more in depth about WinRM from a defensive perspective during lateral movement
in a separate blog but for more details I recommend checking the official documentation [MS-
WSMV]. However, a couple of things we should keep in mind when it come to the limitations
of WinRM and why PowerShell Remoting Protocol (PSRP) is much better choice to go with.

https://github.com/OTRF/Blacksmith/tree/master/resources/configs/sysmon
https://www.hurryupandwait.io/blog/a-look-under-the-hood-at-powershell-remoting-through-a-ruby-cross-plaform-lens
https://msdn.microsoft.com/en-us/library/cc251739.aspx
https://msdn.microsoft.com/en-us/library/cc251740.aspx
https://msdn.microsoft.com/en-us/library/cc251741.aspx
https://msdn.microsoft.com/en-us/library/cc251743.aspx
https://msdn.microsoft.com/en-us/library/cc251746.aspx
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-WSMV/%5BMS-WSMV%5D.pdf

4/27

The default value of a SOAP message size 512KB and a maximum of 8192KB. This
attribute can be modified with the following command : winrm set winrm/config/winrs
'@{<Quota>="<Value>"}' .

WinRM also doesn't have a built-in functionality for file transfer. We will learn in the next
section that PowerShell Remoting Protocol (PSRP) is much better alternative.

Windows Built-in WinRM tools

In order to understand CobaltStrike WinRM beacon capabilities, first, I tried to see normal
behavior of some of the tools that can be used in a legitimate way. There are 3 main ways to
execute command remotely using WinRM:

WinRS:

Windows Remote Shell built-in tool is a pure implementation of remote command execution
via WinRM. Upon executing a command using winrs.exe utility via the command winrs -
r:dc_atlas "ipconfig" the following telemetry was recorded on the destination:

svchost.exe spawns winrshost.exe with the parent command line
C:\\Windows\\system32\\svchost.exe -k DcomLaunch

The winrshost.exe then invokes cmd.exe instance and execute the command
within its context.

5/27

After finishing the execution of the command these processes are terminated because
winrs.exe doesn't support persistent sessions so every time you execute a command

remotely this behavior repeats itself.

6/27

winrs process tree

Invoke-Command & Enter-PSSession :

These PowerShell cmdlets use the PowerShell Remoting Protocol [MS-PSRP] which is a
separate protocol that runs over WinRM. PSRP supports many message types to execute
commands and retrieve their outputs and its main difference from WSMV specs is its
message fragmentation handling process which makes it more reliable vis-à-vis WinRM
message size limitations.
While testing these cmdlets, the following telemetry was recorded on the destination:

svchost.exe spawns wsmprovhost.exe with the parent command line
C:\Windows\system32\svchost.exe -k DcomLaunch

Executing nslookup command via Enter-PSSession

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-PSRP/%5BMS-PSRP%5D.pdf

7/27

Executing ipconfig via Invoke-Command

Invoke-Command & Enter-PSSession both run commands within the context of
wsmprovhost.exe

The difference between these two cmdlets is that Invoke-Command will terminate
wsmprovhost.exe process after receiving the output while the Enter-PSSession will

establish a persistent session.

Invoke-Command & Enter-PSSession process tree

Now that we have established what telemetry can be left behind by using Windows built-in
tools we can distinguish suspicious process behavior. lets see in the following section how
CS default configurations for lateral movement behave.

CobaltStrike jump winrm

8/27

First, lets discover the telemetry that will be generated from source and destination for every
attempt to use WinRM remotely:

On the source:

EID

Action

Provider

Comment

6

WSMan Session Creation

Microsoft-Windows-WinRM

Creating WSMan Session. This event will give you the PID that initiated the connection

31

WSMan Session Creation

Microsoft-Windows-WinRM

WSMan Session Created Successfully

3

Network Connection

Microsoft-Windows-Sysmon

Network Direction: egress

Infected Source Process Name

Destination port : 5985 or 5986

On the destination:

EID

Action

Provider

9/27

Comment

1

WSMan Session Creation

Microsoft-Windows-Sysmon

Process Name : wsmprovhost.exe

Process CMD : C:\Windows\system32\wsmprovhost.exe -Embedding

Process Parent Name : svchost.exe

Process Parent CMD : C:\Windows\system32\svchost.exe -k DcomLaunch

3

WSMan Session Creation

Microsoft-Windows-Sysmon

Network Direction: ingress

Process Name: System

Destination port : 5985 or 5986

User : NT AUTHORITY\SYSTEM

17

Pipe Created

Microsoft-Windows-Sysmon

Network Direction: egress

Infected Source Process Name

Destination port : 5985 or 5986

Pipe Name : \PSHost.[%NUMBERS%].
[%PID%].DefaultAppDomain.wsmprovhost

Process Name : wsmprovhost.exe

4656

10/27

Process Access

Microsoft-Windows-Security-Auditing

Object Server : WS-Management Listener

Process Name : C:\Windows\System32\svchost.exe

400

PowerShell Session Start

PowerShell

Host Name = ServerRemoteHost (Remote PowerSehll Session)

Engine Version (Good for Downgrading PS attacks)

Host Application : C:\Windows\system32\wsmprovhost.exe -Embedding

91

WSMan Session Creation

Microsoft-Windows-WinRM

31

WSMan Session Creation

Microsoft-Windows-WinRM

WSMan Session Created Successfully

142

WSMan Operation Failure

Microsoft-Windows-WinRM

Helpful when WinRM is not enabled on the targeted host

Other events are generated on the destination side but these in the previous table are the
most relevant to remote WinRM activity. You can use them according to your collection and
correlation strategy. Obviously, EID 1 , EID 91 and EID 4656 have much higher event

11/27

decisiveness than the rest. I will be releasing a Mindmap that groups all this telemetry in one
place at the end of this blog post series.

Now jumping to jump winrm command and some first differences in process tree behavior
were observed at execution time:

jump winrm command generated the same telemetry as in previous observations
except that the beacon runs under the context of a PowerShell instance invoked by
wsmprovhost.exe . This is not something we can normally observe by using winrs ,
Invoke-Command or Enter-PSSession except if the command invoked
powershell.exe itself then PowerShell cmdlets would produce this behavior.

By default the powershell.exe instance run via the command line :
"c:\windows\syswow64\windowspowershell\v1.0\powershell.exe" -Version
5.1 -s -NoLogo -NoProfile

CobalStrike provides a shell command to interact with the beacon and execute
command. The shell command spawns a cmd.exe instance from the invoked
powershell.exe process for every executed command

12/27

Executing systeminfo command via jump winrm beacon.

A general diagram of process tree observed during the execution of this CS module is
illustrated bellow:

jump winrm process tree diagram

CobaltStrike jump winrm64

Here are the main differences from jump winrm command :

Like Enter-PSSession , jump winrm64 executes commands within the context of a
wsmprovhost.exe instance. The session is persistent no termination of the
wsmprovhost.exe process was observed.

13/27

Executing ipconfig and hostname command via a jump winrm64 shell

Jump winrm64 process tree diagram

Evidence of Execution

In the previous sections we have established some key observations regarding remote
command execution via WinRM. However, during the demo, I used a stageless beacon. The
script first decodes the Base64 encoded payload then it uses the .Net API to call
Windows API function in memory using assemblies. The script then allocates some memory
and copies the payload in the allocated memory space. The payload was a 64-bits DLL and
technique used was DLL Reflective Loading.

The payload strings contained by default:

"beacon.dll"

"beacon.x86.dll"

"beacon.x64.dll"

This yara rule can be effective in detecting default usage of CS stageless beacons.

https://github.com/airbnb/binaryalert/blob/master/rules/public/hacktool/windows/hacktool_windows_cobaltstrike_beacon.yara

14/27

The following PowerShell events were observed on the target:

EID 4104 Script Block Logging:

This event can be considered noisy, so be careful during you detection
engineering process and consider its verbosity.

Script blocks exceeding the maximum length of an event log message are
fragmented into multiple entries.

Unlike EID 4103 , this event doesn't record the output of the script

EID 4103 Module Logging:

Generates a large volume of events

Records the output of the executed commands

Keep in mind that these event are not enabled by default.

Sigma Rules

 PowerShell Events : Remote PowerShell Session by @Cyb3rWard0g
 Sysmon Process : Remote PowerShell Session by @Cyb3rWard0g
 Windows Events : Remote PowerShell Session by @Cyb3rWard0g
 Sysmon Network : Remore PowerShell Session by @Cyb3rWard0g

Detection Validation

https://github.com/SigmaHQ/sigma/blob/master/rules/windows/powershell/powershell_remote_powershell_session.yml
https://twitter.com/Cyb3rWard0g
https://github.com/OTRF/ThreatHunter-Playbook/blob/master/signatures/sigma/sysmon_remote_powershell_session_process.yml
https://twitter.com/Cyb3rWard0g
https://github.com/OTRF/ThreatHunter-Playbook/blob/master/signatures/sigma/win_remote_powershell_session.yml
https://twitter.com/Cyb3rWard0g
https://github.com/OTRF/ThreatHunter-Playbook/blob/master/signatures/sigma/sysmon_remote_powershell_session_network.yml
https://twitter.com/Cyb3rWard0g

15/27

In order to validate your detection rules against WinRM being used for remote command
execution, Atomic Red Team provides a great guide bellow:

atomic-red-team/T1021.006.md at master · redcanaryco/atomic-red-team

GitHub

DFIR

In DFIR engagements these events can be good source of information to get the right attack
attributions:

EID 142 WSMan operation CreateShell failed (Helpful when WinRM is not enabled on
the target host)

EID 169 User Authenticated Successfully (The user who was connected remotely)

EID 81 Processing Client Request for Operation CreateShell (Start of remoting activity)

EID 134 Sending Response for Operation DeleteShell (End of remoting activity)

EID 403 Engine state is changed from Available to Stopped (This event records the
completion of a PowerShell activity)

WinRM event logs lack simple attribution and traceability meaning you need multiple
correlation layers in order to identify the user, source IP and the ID of the infected process.

The command Get-WSManInstance -ComputerName localhost -ResourceURI Shell -
Enumerate lists all currently active remote WinRM sessions and provides useful information
:

Owner : Username that opened the remote session

ClientIP: Source IP from where the attacker attempted to move laterally.

ProcessID: In this case it is wsmprovhost.exe where the executed commands will be
invoked from.

ChildPocesses: Number of child processes it opened.

MemoryUsed: Can be good indicator since winrm64 CS module used more than
twice the memory used by Enter-PSSession for the same command.

1

16/27

PS C:\\Users\\Administrator> Get-WSManInstance -ComputerName localhost -ResourceURI
Shell -Enumerate

2

3

rsp : <http://schemas.microsoft.com/wbem/wsman/1/windows/shell>

4

lang : en-US

5

ShellId : 04E49AF8-1CA8-4ACC-9135-6A3269115F3E

6

Name : WinRM1

7

ResourceUri : <http://schemas.microsoft.com/powershell/Microsoft.PowerShell>

8

Owner : ATLAS\\Administrator

9

ClientIP : 10.10.10.30

10

ProcessId : 2844

11

IdleTimeOut : PT7200.000S

12

InputStreams : stdin pr

13

17/27

OutputStreams : stdout

14

MaxIdleTimeOut : PT2147483.647S

15

Locale : en-US

16

DataLocale : en-US

17

CompressionMode : XpressCompression

18

ProfileLoaded : Yes

19

Encoding : UTF8

20

BufferMode : Block

21

State : Connected

22

ShellRunTime : P0DT0H4M32S

23

ShellInactivity : P0DT0H1M28S

24

MemoryUsed : 134MB

25

ChildProcesses : 2

18/27

Copied!

A good idea would be to generate an event with the output of this command every time the
process wsmprovhost.exe is created using scheduled tasks.

T1570 : Lateral Transfer Tool

CobaltStrike jump psexec & psexec64

I love going through ZEEK logs first and look for network related telemtery specially for
lateral movement techniques. When using CS psexec or psexec64 modules for lateral
movement I observed remote service creation.

These modules use named pipes (RPC/NP) method to interact with the service control
manager (SCM) RPC server. The server interface is identified by UUID 367ABB81-9844-
35F1-AD32-98F038001003 and uses RPC endpoint \\PIPE\\svcctl .

The following ZEEK event logs were recorded :

ZEEK DCE-RPC event was generated with DCE-RPC endpoint SVCCTL and
operation CreateServiceWoW64A

Zeek DCE-RPC Telemtry for Service Creation

19/27

On the target EID 5145 A network share object was checked to see whether client
can be granted desired access will be generated with Relative Target Name
defined as SVCCTL and Share Name *\IPC$

A service is then created with a random name and Image Path calling the process via
the command \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].exe . This will
generate EID 7045 New Service Was Installed and EID 4697 A Service Was
Installed in the System

Then \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].exe is executed and it
invokes a rundll32.exe instance with no arguments which is very suspicious.

20/27

Interacting with the beacon via SHELL command invokes a CMD instance

Exeecuting Net command via jump psexec installed beacon

The following table is a summary of the observed telemetry relevant to this lateral movement
technique.

EID

Action

21/27

Provider

Comment

5145

Network Share Access

Microsoft-Windows-Security-Auditing

Relative Target Name : svcctl

Share Name : *\IPC$

7045

Service Creation

System

Service File Name: \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].exe

4697

Service Creation

Microsoft-Windows-Security-Auditing

Service File Name: \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].exe

1

Process Creation

Microsoft-Windows-Sysmon

Command Line : \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].exe

Parent Command Line : C:\Windows\System32\services.exe

1

Process Creation

Microsoft-Windows-Sysmon

Command Line : C:\Windows\System32\rundll32.exe

Arguments count : 0

22/27

Parent Image : \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].exe

13

Registry Value Set

Microsoft-Windows-Sysmon

Image Path : \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].ex e

CobaltStrike jump psexec_psh

CobaltStrike can laverage a PowerShell version of PsExec using the built-in module
psexec_psh with everything being executed in memory via a one-liner.

As previously noticed an interaction with SCM RPC server in order to create a service
remotely was observed. Bellow are the ZEEK DCE-RPC event logs with the same
operation as psexec & psexec64 CreateServiceWOW64A

Followed by creation of a new service which generated EID 7045/4697 with
%COMSPEC% and powershell in the Service File Name field.

23/27

PowerShell's EID 400 can be used as a detection opportunity where
HostApplication contains powershell -nop -w hidden -encodedcommand .

Pipe creation with regex pattern status_[0-9a-f]{2} was also observed. I provided
bellow a gist with several regex pattern to detect hard coded named pipes in
CobaltStrike modules. Bellow is a EID 5145 that can be used for this purpose but I
encourage you to sysmon instead for it high event traceability quality.

24/27

Cobalt Strike Named Pipe Regex.csv

Interacting with the beacon via the CS shell command would invoke a cmd.exe
instance.

Executing commands via psexec_psh module

25/27

This pattern alone is very suspicious and can be a good detection opportunity for default
usage of psexec_psh command.

The following are the event logs I observed during the demos:

EID

Action

Provider

Comment

5145

Network Share Access

Microsoft-Windows-Security-Auditing

Relative Target Name : status_[0-9a-f]{2}

Share Name : *\IPC$

7045

Service Creation

System

Service File Name contains : %COMSPEC% or powershell

4697

Service Creation

Microsoft-Windows-Security-Auditing

Service File Name contains : %COMSPEC% or powershell

26/27

17

Pipe Created

Microsoft-Windows-Sysmon

Command Line : \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].exe

Parent Command Line : C:\Windows\System32\services.exe

18

Pipe Connected

Microsoft-Windows-Sysmon

Image Path : \\127.0.0.1\ADMIN$\[SERVICE_RANDOM_NAME].ex e

1

Process Creation

Microsoft-Windows-Sysmon

Command Line Arguments : powershell, -nop, hidden, -encodedcommand

Process Name : powershell.exe

Parent Process Name : cmd.exe

Sigma Rules

Detection Validation

Atomic Red Team provides a good start to validate your detection against some of these
attack techniques:

atomic-red-team/T1569.002.md at master · redcanaryco/atomic-red-team

GitHub

DFIR

27/27

You can use the following CyberChef recipe to decode and extract shellcode
information executed by psexec_psh command.

CyberChef/Cobalt Strike recipe for JABz.txt at main · SophosRapidResponse/CyberChef

GitHub

You can list created pipes using Get-ChilIt em PowerShell cmdlets

1

Get-ChildItem \\\\.\\pipe\\

Copied!

Systinternal has a dedicated tool that also can be leveraged for the same purpose.

Pipelist - Windows Sysinternals

docsmsft

Closing thoughts

This blog post series of Detecting CONTI CobaltStrike Lateral Movement Techniques is
focused on default usage of CS built-in capabilities meaning that sophisticated attacker will
be able to change these settings and evade detections based on them thanks to CobalStrike
modularity. My hope is to increase awareness at least about the telemetry that needs to be
audited and qualified, how to correlate it and how to respond to relevant attacks in order to
increase the time, effort and skills an APT has to invest in order to compromise your assets.

You can read my previous post on Detection Engineering Dimensions Analytics part where I
discuss analytic resilience.

https://www.unh4ck.com/detection-engineering-dimensions/analytics

