
1/6

Threat Advisory: Hackers Are Exploiting a Vulnerability in
Popular Billing Software to Deploy Ransomware

huntress.com/blog/threat-advisory-hackers-are-exploiting-a-vulnerability-in-popular-billing-software-to-deploy-
ransomware

Hackers are constantly looking for low-hanging fruit and vulnerabilities that can be exploited
—and they’re not always poking around in “big” mainstream applications like Office.

Sometimes, a productivity tool or even an add-on can be the door that hackers step through
to gain access to an environment and carry out their next move. Huntress recently
discovered one such vulnerability in a time and billing system called BillQuick.

What Did We Find?

The Huntress ThreatOps team discovered a critical vulnerability in multiple versions of
BillQuick Web Suite, a time and billing system from BQE Software. Hackers were able to
successfully exploit CVE-2021-42258—using it to gain initial access to a US engineering
company—and deploy ransomware across the victim’s network. Considering BQE’s self-
proclaimed user base of 400,000 users worldwide, a malicious campaign targeting their
customer base is concerning.

https://www.huntress.com/blog/threat-advisory-hackers-are-exploiting-a-vulnerability-in-popular-billing-software-to-deploy-ransomware
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42258

2/6

Our team was able to successfully recreate this SQL injection-based attack and can confirm
that hackers can use this to access customers’ BillQuick data and run malicious commands
on their on-premises Windows servers. We have been in close contact with the BQE team to
notify them of this vulnerability, assess the code changes implemented in WebSuite 2021
version 22.0.9.1 and work to address multiple security concerns we raised over their
BillQuick and Core offerings (more to come on these when patches are available).

CVE-2021-42344
CVE-2021-42345
CVE-2021-42346
CVE-2021-42571
CVE-2021-42572
CVE-2021-42573
CVE-2021-42741
CVE-2021-42742

The Red Flag 🚩

Our spidey senses were first set off after a number of our Ransomware Canary files were
tripped within an engineering company’s environment that was managed by one of our
partners. While investigating the incident, we discovered Microsoft Defender antivirus alerts
indicating malicious activity as the MSSQLSERVER$ service account. This indicated the
possibility of a web application being exploited in order to gain initial access. The server in
question hosted BillQuick Web Suite 2020 (WS2020), and the connection logs indicated a
foreign IP repeatedly sending POST requests to the web server logon endpoint leading up to
the initial compromise.

From this context, we suspected that a bad actor was attempting to exploit BillQuick—so
naturally, we began reverse-engineering the web application to trace the attacker’s steps.

Vulnerability Analysis

After downloading a free copy of WS2020 from the BQE website, we installed it locally and
began to investigate. During static analysis of the server-side code, the Huntress team
identified concatenated SQL queries. Essentially, this function allows a user to control the
query that’s sent to the MSSQL database—which in this case, enables blind SQL injection
via the application’s main login form.

http://billquick.net/download/Support_Download/BQWS2021Upgrade/WebSuite2021LogFile_9_1.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42344
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42345
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42456
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42571
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42572
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42573
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42741
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42742

3/6

With help from our partner, we were able to recreate the victim’s environment and validate
simple security tools like sqlmap easily obtained sensitive data from the BillQuick server
without authentication. Because these versions of BillQuick used the sa (System
Administrator) MSSQL user for database authentication, this SQL injection also allowed the
use of the xp_cmdshell procedure to remotely execute code on the underlying Windows
operating system.

Showcasing the SQL injection in the login page

Let’s walk through how we were able to recreate the SQL injection vulnerability in BillQuick.
The below video showcases how easy it is to trigger this vulnerability by submitting a login
request with invalid characters in the username field.

Simply navigating to the login page and entering a single quote (`'`) can trigger this bug.
Further, the error handlers for this page display a full traceback, which could contain
sensitive information about the server-side code.

Scanning the application endpoint

Sqlmap, an open source cybersecurity testing tool, can be used to test for and exploit these
types of vulnerabilities. The tool is able to automatically detect SQL injection vulnerabilities,
generate queries to leak sensitive data from the backend database, and in certain cases,
gain remote code execution.

Here, we showcase an initial scan of the login endpoint. The file login-request.txt
contains a raw HTTP request which performs an attempted login. There is nothing inherently
malicious about this request, but sqlmap is capable of mutating this request to identify
potential injection vulnerabilities.

In this case, the argument -p txtID tells sqlmap that we would like to test the txtID
argument (this corresponds to the username input). --time-sec increases timeouts while
sending requests (our BillQuick server was particularly slow to respond). The --risk and
--level arguments adjust how aggressive sqlmap scanning will be. Because this is local

testing, we specified higher risk and level values to better tap the full potential of sqlmap .

Multiple SQL injection points identified

 At this point, sqlmap knows how to exploit the vulnerability. It is common to ask sqlmap to
test multiple parameters, so it politely asks if we would like to continue testing others—in this
case, we only asked it to test one parameter.

https://sqlmap.org/

4/6

After scanning is complete, sqlmap will use the injection to fetch the details of the backend
SQL database server. In this example, sqlmap correctly identified Microsoft IIS, Microsoft
SQL Server 2019 and Windows 2019.

 Next, we tell sqlmap to enumerate all databases on the SQL server; sqlmap remembers
the previously identified vulnerabilities and will automatically use the most appropriate one. It
quickly identifies the standard databases as well as BQ2020 and BQ2020ARK .

Dumping SQL database tables

Now that we know the database name, we can begin dumping database data. In this case,
we already know the name of a sensitive database table (SecurityTable) used by
BillQuick Web Suite. This is easily identified by installing a local copy and inspecting the
database. This table stores permission data and encoded passwords for all employees in the
BillQuick database.

Just to reiterate: We have not authenticated, but we are still able to remotely leak highly
sensitive employee information. As a billing management server, there is likely a lot more
sensitive information living in the production database.

Gaining remote code execution

Leaking sensitive information is bad enough, but malicious actors are also gaining remote
code execution with this vulnerability.

It is worth noting that if your database server is configured to block use of the xp_cmdshell
extended stored procedure and BillQuick Web Suite was configured to use a least-privilege
SQL user, remote code execution in this way would not be possible. However, BillQuick Web
Suite setup information references the built-in sa account when discussing setup and
installation multiple times. Any user with read/write access to the BillQuick database could be
used, but it is common for system administrators to follow documentation verbatim.

In practice, Huntress has observed partners using BillQuick Web Suite with the built-in sa
account, which allows full access to the back-end database server, including xp_cmdshell ,
regardless of configuration restrictions.

5/6

In this case, we use specially-crafted stacked SQL queries to execute the necessary
commands for re-enabling the xp_cmdshell extended stored procedure and then execute
code through powershell.exe . In the above video, we showcase writing to a file on the
server host and spawning calc.exe as the MSSQLSERVER$ service account.

Observing the sqlmap scanning in the logs

BillQuick Web Suite will typically write logs for exceptional conditions to
C:\BillQuickData\AppLog . These logs are full tracebacks from the application when

something goes wrong. While testing with sqlmap , many of these errors occurred and were
logged here. This is a very useful place to check for past exploitation attempts or to debug
your own testing.

It's worth noting, though, that this is not a sure-fire detection tool. Successful SQL injection
queries will cause no errors to be logged. Further, some code paths within BillQuick Web
Suite do not log exceptions to this file. However, the presence of shady or unusual failed
SQL statements in your log file strongly suggests that someone has been poking where they
shouldn't be.

• • •

Parting Thoughts

We really appreciate the BQE team’s timely responses to these vulnerability notifications. In
2021, it’s still extremely common for vendors to sweep cybersecurity issues under the rug;
we have the impression that BQE is taking our feedback seriously.

With that said, this incident highlights a repeating pattern plaguing SMB software: well-
established vendors are doing very little to proactively secure their applications and subject
their unwitting customers to significant liability when sensitive data is inevitably leaked and/or
ransomed.

Rather than stand idly by, Huntress is spearheading multiple SMB efforts to:

Drive awareness of the code quality epidemic before hackers deliver a “great
reckoning”
Celebrate and destigmatize vendors who transparently disclose their corrected issues
Incentivize security researchers to find and responsibly report vulnerabilities
Hold vendors accountable for lagging security practices and unwelcoming behavior

As a community, we’re going to be the security tide that raises all boats. It’s time to rise up.

6/6

Caleb Stewart

Security Researcher at Huntress.

https://www.huntress.com/blog/author/caleb-stewart

