
1/13

Hidden in Plain Sight: Identifying Cryptography in
BLACKMATTER Ransomware

mandiant.com/resources/cryptography-blackmatter-ransomware

Breadcrumb

Blog

Jacob Thompson

Oct 20, 2021

10 mins read

Ransomware

Threat Research

https://www.mandiant.com/resources/cryptography-blackmatter-ransomware

2/13

Malware

One of the main goals of evaluating a ransomware sample is to determine what kind of
cryptography the sample uses. Sometimes this is straightforward; for a BLACKMATTER
sample we analyzed, it was not. We found the process we used to identify the mathematical
operations of RSA cryptography from the BLACKMATTER code interesting and reusable for
other malware samples and for becoming a better reverse engineer in general.

Introduction

The BLACKMATTER ransomware family has been identified in several recent attacks. Other
authors have published summaries of BLACKMATTER, including its relationship to prior
families REVIL and DARKSIDE, and method of encryption. Additionally, the U.S. Department
of Health and Human Services has published a summary of BLACKMATTER covering
historical timeline, associated threat groups, and types of victims.

Mandiant’s FLARE team performed an internal analysis on a 32-bit BLACKMATTER variant
(sha256: 5da8d2e1b36be0d661d276ea6523760dbe3fa4f3fdb7e32b144812ce50c483fa).
Like many ransomware families, BLACKMATTER uses a combination of symmetric and
asymmetric cryptography to hold its victims’ data for ransom. A BLACKMATTER sample has
an asymmetric public key inside its configuration, and only the threat actor holds the
corresponding private key. When attacking each of a victim’s files, BLACKMATTER first uses
symmetric cryptography to encrypt the file. BLACKMATTER then uses the asymmetric public
key to encrypt the symmetric key and appends that encrypted key to the end of the file. The
symmetric key is then thrown away. The design means that no amount of reverse
engineering of the BLACKMATTER binary alone can allow the victim to decrypt the files,
because only the attacker’s private key can decrypt the per-file keys and recover the original
data.

As we reversed BLACKMATTER, we quickly found its symmetric encryption to be a modified
version of Salsa20. The asymmetric cryptography was not as obvious. Ransomware
samples often employ a cryptographic library such as Windows wincrypt, OpenSSL, or
Crypto++; often the library is statically linked to make it somewhat more difficult to identify.
BLACKMATTER was unique and used no identifiable cryptographic libraries. Some
cryptographic routines have telltale behaviors—RC4 fills an array of 256 bytes with the
values 0 to 255, and Salsa20 performs left rotations of 7, 9, 13, and 18 bits. We did not
immediately recognize asymmetric code in BLACKMATTER as a familiar algorithm. Magic
numbers can identify cryptographic algorithms, such as ChaCha20’s “expand 32-byte k,”
AES’s Te and Td tables, and ASN.1-related byte sequences such as 30 82 02 (or MIIC after
base64 encoding); neither did we recognize any magic numbers.

Ultimately, we identified BLACKMATTER’s asymmetric cryptography as 1024-bit RSA, a
common and unremarkable choice that we identified partly through the process of elimination
(and previous analysis of BLACKMATTER and its predecessor families), but also by locating

https://www.hhs.gov/sites/default/files/demystifying-blackmatter.pdf

3/13

the mathematical operations employed by BLACKMATTER and connecting them to the raw
math behind RSA. It is the process we employed to locate and identify the RSA algorithm
that we thought of as interesting and reusable for other malware samples and reverse
engineers, and that is the focus of this blog post.

Review of RSA

First, let us begin with a brief review of how RSA works. RSA (Rivest-Shamir-Adleman) is an
archetypical cryptosystem for asymmetric cryptography. An individual generates a key pair
(public and private key) according to the algorithm; the private key is kept secret while the
public key is widely distributed. Among other uses, any party can send the individual a secret
message by encrypting the message with the public key and delivering it over an
unprotected communication channel. In legitimate use, RSA could be used in e-commerce to
establish a shared secret for encrypting information in a credit card transaction. In illicit use
like ransomware, RSA is perfectly suited for concealing the information needed to decrypt
files until payment is received and then exchanged for the private key.

RSA operates on the principle of modular exponentiation, which is easy to perform but hard
to reverse. Here is a greatly simplified explanation of how RSA keys are generated:

1. Select two distinct large prime numbers p and q. Let n = pq and ϕ(n) = (p-1)(q-1). n is
not secret and may be freely shared as part of the public key, while also knowing ϕ(n)
would allow anyone to break the encryption.

2. Select an exponent for encryption, e. In practice, e = 65537 is almost always used.
3. Determine the corresponding exponent for decryption, d ≡ e (mod ϕ(n)), which is

straightforward using the Extended Euclidean Algorithm, but intractable without
knowing ϕ(n).

4. The pair (n, e) is the public key; d is the private key. Information sufficient to derive d
(such as p and q or ϕ(n)) must also be kept secret.

A message may then be encrypted by computing E(m) = m mod n and decrypted by
computing D(E(m)) = (m mod n ≡ m (mod n). This property of n, m, e, and d comes from
Fermat’s Little Theorem and can be explored by reviewing a more detailed explanation of
RSA.

Binary Exponentiation

The choice of e = 65537 is intentional and allows encryption to be performed efficiently while
remaining secure. Since e = 65537 = 65536 + 1 = 2 +1, m modn can be computed
using binary exponentiation as follows:

 x=m

 for i = 1 to 16:

-1

e

e)d 1

16 65537

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

4/13

 x = x mod n

 x = xm mod n

Once RSA encryption is distilled to this form, the only complication is that a function is
needed to perform “big number” modular multiplication, i.e., f (x, y, n) = xy mod n. Inevitably,
while analyzing BLACKMATTER, our attention was diverted to a function which performs
modular multiplication, but whose purpose was not obvious. Compounding that, the constant
65537 never appears in the code when implemented as above. Next, we present an
explanation showing how we verified how each asymmetric cryptographic function in the
BLACKMATTER sample fit in as part of the RSA encryption process.

Multiplication Function

The multiplication of two unsigned binary integers can be expressed as a series of additions
and multiplications by two, e.g.:

145 · 113

145 · (2 +2 +2 +2)

(145 · 2 + 145 · 2 + 145) · 2 + 145 · 2

((145 · 2 + 145) · 2 + 145) · 2 · 2 · 2 · 2 + 145

Since a multiplication by two is just a left bit shift by one bit, this makes it possible to multiply
x · y using only left shifts and additions, examining each bit of x to determine whether y
should be added into the running product on each iteration before shifting the running
product to the left. The BLACKMATTER big number multiplication function sub_401B24 (x, y,
n), based on this exact principle, calculates x = (x * y) % n.

Of course, x86 machines do not have 1024-bit registers or immediate values, so an
operation on a 1024-bit integer must be broken down into 32 operations on each 32-bit
chunk of the 1024-bit integer. The x86 instructions rcl, adc, and sbb make such big number
arithmetic possible, using the carry flag to propagate a 0- or 1-bit to the next 32-bit chunk as
appropriate.

First, the big number multiplication function allocates some stack space for a temporary
1024-bit integer z to hold the running product, and initializes it to zero (Figure 1).

2

6 5 4 0

2 4 0

5/13

Figure 1: The big number multiplication function starts by

initializing a 1024-bit integer z to zero
Next, the big number multiplication function loops over each bit in its inputs and outputs. For
each iteration, the function first shifts z left by one bit (Figure 2).

6/13

Figure 2: The big number multiplication

function shifts z to the left by one bit. Since z is 1024 bits long, the rcl instruction allows the
shift to be done on each 32-bit chunk
This calculation multiplies z by two, and therefore may cause z to exceed n. To ensure the
calculation is performed mod n, the function next subtracts n from z (Figure 3).

7/13

Figure 3: After doubling z, the big number multiplication must

subtract n from z to ensure the calculation is done mod n
Note that the malware did not check whether z ≥ n before performing the subtraction, so if
the result was negative, the function adds n to z to reverse the previous subtraction and
restore z to the range [0, n) (Figure 4). The malware operates this way because comparing z
to n before performing the previous subtraction would have been just as computationally
expensive as performing the subtraction.

8/13

Figure 4: If z -= n produced a negative result, n is added

back to z to restore z to the correct range mod n
Now, the function shifts x to the left by one bit. The formerly leftmost bit of x is then left in the
carry flag. If the bit was 1, y is added to z; if it was 0, y is not added to z (Figure 5).

9/13

Figure 5: The big number multiplication function shifts x to

the left by one bit and uses the formerly-leftmost bit to determine whether y should be added
to the running product z on this iteration
In either case, z is again restored into the range [0,n) so that all calculations remain mod n.
This process continues for 1024 iterations. Put another way, x is examined bit-by-bit to
determine whether or not y should be added to the intermediate product z on each iteration
before it is shifted. After all the iterations, x is overwritten with the product z (Figure 6).

10/13

Figure 6: The value x is overwritten with the running

product z once the calculation is complete
Note that sub_401B24 can be used to calculate x mod n by calling sub_401B24(x, x, n).

Binary Exponentiation Function

We found that the big number multiplication function previously described was repeatedly
called by what we analyzed to be a binary exponentiation function, sub_4019C0 (x, buf, n,
m). This binary exponentiation function computes x = x mod n if m is NULL, or x =
mx mod n if m is not NULL. When the binary exponentiation function squares x eight times,
and optionally multiplies by m, the binary exponentiation function makes nine separate calls
to the big number multiplication function in an “unrolled” fashion, making its purpose slightly
more difficult to identify. Here is an excerpt of the IDA pseudocode from the binary
exponentiation function:

const __m128i *__stdcall sub_4019C0 (const __m128i *x, __m128i *buf, int n, int m)
 {

…
 x0 = x;

 y0 = buf;
 i0 = 8;

2

256

256

11/13

 do
 {
 *y0++ = _mm_load_si128 (x0++) ;
 --i0;
 }
 while (i0);
 y1 = buf;
 x1 = x;
 sub_401B24((__m128i *)x, (int)buf, (_DWORD *) n);
 i1 = 8;
 do
 {
 *y1++ = _mm_load_si128(x1++);
 --i1;
 }
 while (i1);
...
 y8 = buf;
 x8 = x;
 result = sub_401B24 ((__m128i *)x, (int) buf, (_DWORD *) n);
 if (m)
 {
 i8 = 8;
 do
 {
 *y8++ = _mm_load_si128 (x8++);
 --i8;
 }
 while (i8);
 return sub_401B24 ((__m128i *) x, m, (_DWORD *) n);
 }
 return result;
}

RSA Encryption Function

With the pieces put together, now we can understand the RSA encryption function in
BLACKMATTER that wraps the other routines. The RSA encryption function sub_40183C
(m, n) encrypts m by calculating m=m mod n. As individual steps it operates as follows:

1. Let buf and x be 1024-bit integers, and let x = 1.
2. Call the binary exponentiation function sub_4019C0 (x, buf, n, m) to calculate x = mx

mod n, which, since x = 1, is just x = m.

65537

256

12/13

3. Call the binary exponentiation function sub_4019C0 (x, buf, n, 0) to calculate x = x
mod n.

4. Call the binary exponentiation function sub_4019C0 (x, buf, n, m) to calculate x = mx
mod n

At the end of these steps, x = m(m) mod n = m mod n.

Here is an excerpt of the IDA pseudocode from the overall RSA encryption function:

__m128i *__stdcall sub_40183C(__m128i *m, __m128i *n)
{
…
 x [0] .m128i_i64 [1] = 0i64;
 memset (&x [1], 0, 112);
 x [0] .m128i_i64 [0] = 1i64;
 sub_4019C0 (x, buf, n, m);
 sub_4019C0 (x, buf, n, 0);
 sub_4019C0 (x, buf, n, m);
 px = x;
 pm = m;
 i = 8;
 do
 {
 *pm++ = *px++;
 --i;
 }
 while (i);
 return px;
}

Since Python natively supports big number integers, the entire BLACKMATTER calculation
could be simplified in Python as follows:

x = m
for i in range (16):
 x = x * x % n
x = x * m % n

Conclusion

In analyzing BLACKMATTER we found that the author accomplishes RSA encryption with
only three freestanding functions with no external libraries. The RSA public key does not
stand out as it is simply a 1024-bit integer in the binary. There are no magic numbers—not
even 65537—because of how the code is structured; the number 65537 is implicit in

256

256

256 256 65537

13/13

performing the sixteen squarings followed by one final multiplication by m; it is possible the
author used inline assembly within the three routines. We hope the reader will find these
observations useful in spotting RSA implementations in other malware. We also found an
insightful reminder in that instead of obscuring the meaning of code through obfuscation and
packing, an attacker can also hide it in plain sight by creating freestanding and minimalistic
implementations of cryptographic algorithms with no external dependencies.

