
1/8

Recovering some files encrypted by LockBit 2.0
skyblue.team/posts/hive-recovery-from-lockbit-2.0/

Oct 15, 2021 · 1066 words · 6 minute read

The LockBit 2.0 ransomware has been incredibly “productive” these last few months: their
technique is well automated, and the list of compromised companies keeps growing every
day.

In order to reduce the destructiveness of their payload, most ransomware operators do not
encrypt every single file on a system; instead, they set out a set of rules, for example:

Only encrypt files with specific extensions: .docx , .cpp , .db , .log
Don’t encrypt files in C:\Windows\System32 , in order to keep a semi-working
machine (otherwise how would the users read the ransom note?)

LockBit 2.0 has a pretty interesting quirk though: as an optimization, only the first 4KiB (4096
bytes) of each file are encrypted. This is usually enough to lock away important data and
make file recovery a pain. It also speeds up the encryption process.

We have also observed that the LockBit 2.0 ransomware is pretty generous in the extension
list it encrypts: even user hive files (NTUSER.DAT) are encrypted, which is a pain if we want
to extract useful data from it. But registry hives can be pretty big, could we maybe recover
some data anyway?

Registry hive structure 🔗

In order to understand how we can recover the hives, we must first have a look at how
registry hives are stored on-disk. Willi Ballenthin’s python-registry has some good
explanations, including a text file from a certain B.D. which goes over the structure of hives
for both Windows 95 and NT. This document tells us that NT optimized hive loading by
making the header the typical size of a page, 4KiB.

https://skyblue.team/posts/hive-recovery-from-lockbit-2.0/
https://www.trendmicro.com/en_us/research/21/h/lockbit-resurfaces-with-version-2-0-ransomware-detections-in-chi.html
https://github.com/airbus-cert/regrippy/
https://github.com/williballenthin/python-registry
https://github.com/williballenthin/python-registry/blob/master/documentation/WinReg.txt

2/8

This means that LockBit only encrypts the header, and doesn’t touch the actual data of the
hive. Is it possible to restore the header? To answer this question, we must list everything the
header contains:

A magic number (regf)
Sequence numbers (used for inconsistency detection)
Modification timestamp
Version numbers
Hive name
Hive flags
Header checksum

Basically, we can see that the header is mostly self-contained: there’s no reference to hbin
offset, or a global hive checksum. There should be no problem restoring the header by
copying it from another hive of the same type 😊

Restoring the hive 🔗

3/8

Simply by copying over the first 4096 bytes from another, clear NTUSER.DAT , we were able
to entirely recover all our user hives!

$ regrip.py --ntuser ./ntuser_recovered.dat userassist | wc -l
84

It works! RegRippy will be confused when trying to give you the user names when extracting
data from NTUSER.DAT , because it guesses them based on the hive name, which has been
copied over from a clean hive. Other than that, everything works as expected, and all data is
accessible.

If you ever encounter this issue, here’s a script which can restore an encrypted
NTUSER.DAT hive: it’s basically rebuilding the header and replacing it to create a clean hive.

4/8

#!/usr/bin/env python3

import argparse

def main():
 parser = argparse.ArgumentParser(description="Fix encrypted hives by repairing
the header (only for NTUSER.DAT)")

 parser.add_argument("--user", type=str, help="The user name to store in the
header (default: JohnDoe)", default="JohnDoe")
 parser.add_argument("hive_path", type=str, help="Encrypted hive path")
 parser.add_argument("output", type=str, help="Where to output the fixed hive")

 args = parser.parse_args()

 hive_name = "??\\C:\\Users\\" + args.user + "\\ntuser.dat"
 encoded_hive_name = hive_name.encode("utf-16-le")
 if len(encoded_hive_name) > 64:
 encoded_hive_name = encoded_hive_name[:64]
 else:
 encoded_hive_name += b"\x00" * (64 - len(encoded_hive_name))

 header =
b"regfH\x1E\x00\x00\x48\x1E\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x0

 header += encoded_hive_name
 header +=
b"\x43\xBE\x11\x44\xFF\x07\xE8\x11\x92\x75\xEA\x28\xA0\xD0\x3E\x60\x43\xBE\x11\x44\xFF

 header += b"\x00"*316
 header += b"\xD8\xC9\x70\x75"
 header += b"\x00"*3584

 with open(args.hive_path, "rb") as h1:
 with open(args.output, "wb") as h2:
 data = h1.read()
 without_header = data[4096:]
 h2.write(header)
 h2.write(without_header)

 print("Done! Hive written to", args.output)

if __name__ == "__main__":
 main()

(Update) Extending the technique to other file types 🔗

In passing, @citronneur mentioned that EVTX files also had a 4 KiB header. Maybe they
could be reconstructed as well?

https://twitter.com/citronneur

5/8

When investigating Windows file formats, it’s always a good idea to check Joachim Metz’s
libyal repositories. In that case, bingo! libevtx exists, with some very detailed
documentation.

https://github.com/libyal
https://github.com/libyal/libevtx/blob/main/documentation/Windows%20XML%20Event%20Log%20%28EVTX%29.asciidoc

6/8

Basically, an EVTX file is composed of several chunks, and each chunk contains a number
of records. Each record has an ID, which is unique across all chunks.

We assume the first chunk number is always 0. To get the last chunk number, we will search
for the signature "ElfChnk\x00" and count its occurrences. We assume chunks are
numbered in increasing order, starting from zero.

To get the last record ID, we first get the last chunk (easy, because each chunk has a fixed
size), and parse the offset to the last record from its header. We then parse the record at this
offset to extract its ID.

The checksum is a simple CRC32 of the first 120 bytes of the file header. With this, we are
able to recreate all the data from the encrypted file header and read the events!

And here is a Python script which does just that:

7/8

#!/usr/bin/env python3

import argparse
import binascii
import sys

def get_number_of_chunks(data):
 count = 0
 needle = b"ElfChnk\x00"
 for offset in range(len(data) - len(needle)):
 if data[offset : offset + len(needle)] == needle:
 count += 1

 return count

def get_chunk(data, n):
 data = data[4096:] # get rid of header
 print("[+] Getting chunk", n)
 chunk = data[n * 65536 : (n + 1) * 65536]
 assert chunk[:8] == b"ElfChnk\x00"
 return chunk

def get_last_record(chunk):
 offset = int.from_bytes(chunk[44:48], byteorder="little")
 print(f"[+] Last record offset: {offset} (0x{offset:x})")
 if offset == 0:
 print("[!] Error: this EVTX file probably has no events")
 sys.exit(1)
 record = chunk[offset:]
 assert record[:4] == b"\x2a\x2a\x00\x00"
 return record

def get_record_id(record):
 i = int.from_bytes(record[8:16], byteorder="little")
 print("[+] Record id:", i)
 return i

def main():
 parser = argparse.ArgumentParser(description="Fix LockBit2.0 EVTX file")

 parser.add_argument("file", type=str, help="Path to evtx file")
 parser.add_argument("output", type=str, help="Where to store the resulting file")

 args = parser.parse_args()

 data = None
 with open(args.file, "rb") as f:
 data = f.read()

 print("[+] Loaded", args.file)

8/8

 chunks = get_number_of_chunks(data)
 print("[+] Number of chunks:", chunks)

 signature = b"ElfFile\x00"
 first_chunk_number = (0).to_bytes(8, byteorder="little")
 last_chunk_number = (chunks - 1).to_bytes(8, byteorder="little")

 next_record_id = get_record_id(get_last_record(get_chunk(data, chunks - 1))) + 1
 next_record_id = next_record_id.to_bytes(8, byteorder="little")
 header_size = (128).to_bytes(4, byteorder="little")
 minor_version = (1).to_bytes(2, byteorder="little")
 major_version = (3).to_bytes(2, byteorder="little")
 header_block_size = (4096).to_bytes(2, byteorder="little")
 number_of_chunks = chunks.to_bytes(2, byteorder="little")
 unk1 = b"\x00" * 76
 file_flags = (0).to_bytes(4, byteorder="little")
 crc32 = -1
 unk2 = b"\x00" * 3968

 header = (
 signature
 + first_chunk_number
 + last_chunk_number
 + next_record_id
 + header_size
 + minor_version
 + major_version
 + header_block_size
 + number_of_chunks
 + unk1
 + file_flags
)
 crc32 = binascii.crc32(header[:120]) & 0xFFFFFFFF
 header += crc32.to_bytes(4, byteorder="little")
 header += unk2

 assert (len(header)) == 4096

 with open(args.output, "wb") as f:
 f.write(header)
 f.write(data[4096:])

if __name__ == "__main__":
 main()

