
1/22

Memory Forensics R&D Illustrated: Detecting Mimikatz's
Skeleton Key Attack

volatility-labs.blogspot.com/2021/10/memory-forensics-r-illustrated.html

In this blog post, we are going to walk you through the research and development process
that leads to new and powerful memory analysis capabilities. We are often asked about what
this workflow looks like, and how the abuse of an API by malware or a new code injection
technique can be successfully uncovered by a Volatility plugin. To showcase this process, we
are going to analyze the Skeleton Key feature of Mimikatz, and then develop a brand-new
Volatility 3 plugin that can successfully detect this backdoor technique across memory
samples. While Volexity Volcano customers have had this capability, we wanted to contribute
this back to the Volatility community, since there was no publicly available plugin. This post
will also reveal a number of entirely new features.

To reach this goal, we will first study the relevant Mimikatz source code; then we will reverse
engineer the API that Mimikatz uses to locate its victim data structure; and then we will write
a plugin that can replicate this search and look for signs of tampering. As you will see shortly,
the new Skeleton Key detection plugin is fully documented and shows how to perform a wide
range of tasks using the APIs of Volatility 3.

Our hope with this blog post is to inspire more members of the community to challenge
themselves to develop their own new capabilities, and to experience what real-world
malware and operating systems investigations entail. If you find this work interesting and
decide to develop your own plugin(s), please consider submitting them to our 2021 Volatility
Plugin Contest and take a chance at winning several prizes, including cash or a free spot in
our popular Malware and Memory Forensics training.

Skeleton Key Background

The Skeleton Key technique was first detected in the wild by the DFIR team at SecureWorks.
Their blog post walks through the steps taken by the malware sample they uncovered. They
also worked with Microsoft on a follow-up paper about the attack type and its variations. The
implementation in Mimikatz is very similar to the one described in their research.

https://volatility-labs.blogspot.com/2021/10/memory-forensics-r-illustrated.html
https://www.volexity.com/products-overview/volcano/
https://volatility-labs.blogspot.com/2021/08/the-9th-annual-volatility-plugin-contest.html
https://volatility-labs.blogspot.com/2021/01/malware-and-memory-forensics-training.html
https://www.secureworks.com/research/skeleton-key-malware-analysis
https://www.virusbulletin.com/uploads/pdf/magazine/2016/vb201601-skeleton-key.pdf

2/22

The idea behind the Skeleton Key technique is to backdoor the authentication subsystem of
Windows Active Directory domain controllers. This is accomplished by injecting code into the
running lsass.exe process, and then hooking the routines used when verifying a domain
account’s credentials. With the hooks in place, attackers are able to authenticate as any valid
user in an AD domain by using a hard-coded password (termed the Skeleton Key by
SecureWorks).

The ability of attackers to log in as any user makes several traditional incident remediation
procedures largely ineffective. As an example, it is very common during incidents to
temporarily disable accounts that attackers are/were using or to at least force a password
reset of these accounts. When a Skeleton Key is active, these procedures are not helpful,
since any account can be used. This problem is also compounded by the fact that all user
accounts in a domain could potentially be abused by attackers, and a significant amount of
log review (assuming logs are available) is necessary to trace the abuse of accounts and any
associated lateral movement. This ability to authenticate as any user to any system is
incredibly powerful and significantly expands the scope of DFIR engagements.

Analyzing the Skeleton Key Capability of Mimikatz

Activating the Skeleton Key attack of Mimikatz requires using its misc::skeleton command
after running the usual privilege::debug command. There are many great blog posts that
document this process by showing the related Mimikatz output and other related information,
such as here, here, and here. Cycraft also documented malware from the Chimera APT
group that used a significant amount of code from misc::skeleton to implement its own
Skeleton Key attack. The end result of this command is a Skeleton Key attack being active
on the system; the attacker is able to authenticate with the malware-controlled credentials.

Running the misc::skeleton command will lead to the kuhl_m_misc_skeleton function being
called inside the active Mimikatz instance. This function is responsible for patching the
needed code and data inside the lsass.exe process to make the Skeleton Key active. The
first steps in this process are shown in the following image:

In this code, Mimikatz first gets the process ID of lsass.exe and stores it in the processId
variable. Next, it calls OpenProcess to obtain a handle to the lsass.exe process. This handle
gives the ability to read and write the memory of the lsass.exe process from the calling

https://riccardoancarani.github.io/2020-08-08-hunting-for-skeleton-keys
https://www.hackingarticles.in/domain-controller-backdoor-skeleton-key/
https://adsecurity.org/?p=1255
https://cycraft.com/download/%5BTLP-White%5D20200415%20Chimera_V4.1.pdf
https://attack.mitre.org/groups/G0114/
https://attack.mitre.org/groups/G0114/
https://github.com/gentilkiwi/mimikatz/blob/fe4e98405589e96ed6de5e05ce3c872f8108c0a0/mimikatz/modules/kuhl_m_misc.c#L655
https://1.bp.blogspot.com/-0hiMyqfJ41A/YUzxsNS1CjI/AAAAAAAADY8/FVEew-FLRTsFzC1VwVYr69GwJz8sg14vgCLcBGAsYHQ/s556/1lsass5.jpg
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

3/22

process. Mimikatz then calls kull_m_memory_open, which is an internal Mimikatz function
that stores the handle for later use.

After Mimikatz is able to read and write memory of the lsass.exe process, it then searches
for the Kerberos-Newer-Keys string in memory so that it can find the data structure related to
AES-based authentication. It then manipulates this structure so that authentication is
downgraded to the weaker RC4 without the use of a salt. Note that this is the same approach
described in the previously linked Cycraft report. Older reports, such as the one from
Microsoft, describe how malware can also achieve the same result by hooking the
SamIRetrieveMultiplePrimaryCredentials function and forcing it return an error when the
Kerberos-Newer-Keys package is used. The end result of both methods is the same: all
authentication attempts to an infected domain controller will use the weaker RC4 algorithm.

After downgrading the domain controller to RC4, Mimikatz will then attempt to locate and
patch the data structure that handles RC4-based authentication. The following image shows
the beginning of this code:

First, the module information is gathered for the “cryptdll.dll” module loaded within the
lsass.exe process. This module is responsible for implementing the different encryption
packages, which are also known as systems. Next, the address of where cryptdll.dll is
loaded within the Mimikatz process is gathered by calling GetModuleHandle.

The undocumented CDLocateCSystem function is then called with an argument of
KERB_ETYPE_RC4_HMAC_NT and the address to store the resulting lookup (&pCrypt).
CDLocateCSystem determines the address of the data structure that handles the given
(KERB_ETYPE_RC4_HMAC_NT) authentication system and copies its contents into the

https://1.bp.blogspot.com/-8uTtfwgoDm8/YUz2dXJ-1DI/AAAAAAAADZg/Dtmnwj0A-_Yq6r7yY_zNtuEZ5gcI0wRrgCLcBGAsYHQ/s608/p4.jpg
https://docs.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-getmoduleinformation

4/22

passed-in pCrypt address. In this instance, it will be for the system that implements RC4-
based authentication, and it will contain the information shown below:

The actual data structure definition for this type is not documented by Microsoft, so the
above image is directly from the Mimikatz source code. The arrows point to the members
relevant to our plugin, which include the encryption type; the function pointers for the
initialization, encryption, decryption, and finish operation handlers; and the pointer to the
string name of the system.

After finding the _KERB_ECRYPT instance for RC4 through the use of CDLocateCSystem,
Mimikatz then hooks the legitimate initialization (Initialize) and decryption (Decrypt) members
of the structure. These hooks point the handlers to Mimikatz’s malicious handlers
(kuhl_misc_skeleton_rc4_init and kuhl_misc_skeleton_rc4_init_decrypt) instead of the
legitimate ones. The malicious handlers are injected into the address space of lsass.exe
through the use of the WriteProcessMemory function. Combined, these malicious handlers
are what implement the Skeleton Key attack, as they give Mimikatz control over all future
authentication attempts to the infected domain controller.

Devising a Detection Strategy

Now that we understand how Mimikatz implements its attack—forcing a downgrade to RC4
followed by hooking the RC4 initialization and decryption routines—we can devise a strategy
to detect the attack in memory.

https://lh3.googleusercontent.com/-JBDJrqOBGgA/YU-delJ9XEI/AAAAAAAADZs/kR0haMDGFAUwAp-MYTL_6sxm-Z6WazpmgCLcBGAsYHQ/kerb2.jpg
https://github.com/gentilkiwi/mimikatz/blob/master/modules/kull_m_crypto_system.h
https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf

5/22

We could start by attempting to detect the RC4 downgrade, but this has a few limitations.
First, the string needed to find this data structure (Kerberos-Newer-Keys) is zeroed out as
part of the attack, removing the possibility of a scanning-based approach to finding it.
Second, attempting to detect that this string has been zeroed out would lead to many false
positives due to paging of data out to disk, as well as the possibility of the page holding the
string being smeared. Third, there are other methods to force a downgrade to RC4 without
directly altering this string (as discussed in earlier references), meaning several approaches
would be needed to completely detect it. Finally, finding proof of the downgrade only gives a
clue that a Skeleton Key attack might have been performed, but it does not offer direct
evidence.

On the other hand, by examining the RC4 data structure directly, we can inspect the
handlers for the initialization and decryption routines and determine if they were altered at
runtime. This not only definitively tells us if a Skeleton Key attack occurred, but it also tells us
exactly where the malicious handlers are inside of the infected lsass.exe process. Given that
this approach gives direct evidence of the attack, as well as directly points out the malicious
code, inspecting these handlers was chosen as the detection method for our plugin.

Reverse Engineering CDLocateCSystem

Before we can locate the handlers to then verify them, we need to be able to find the RC4
data structure in a repeatable and consistent manner. As shown previously, Mimikatz locates
the address of the RC4 data structure by calling CDLocateCSystem. This tells us that if we
can replicate the algorithm of CDLocateCSystem—or at least build an algorithm that is equal
—we can reliably locate the RC4 structure to then verify its handlers.

Since cryptdll.dll contains the CDLocateCSystem function implementation and is closed
source, we will need to reverse engineer the function to determine its algorithm. As you will
see next, this function is pretty simple, so do not panic if you have never reverse engineered
before; the concept will be straightforward.

The following images show the IDA Pro decompiler and graph view of CDLocateCSystem:

6/22

As seen above, the function is pretty small and simple. It begins (the first instruction of
CDLocateCSystem in the disassembly view) by copying the current value of cCSystems
global variable into the r8d register, which is an alias for the lower 32 bits of 64-bit r8 register.

https://lh3.googleusercontent.com/-O-koCIj11m4/YU-glI-DKmI/AAAAAAAADaQ/uKV-mxfRTAYqxQRE6PeAZ224VoLIf660QCLcBGAsYHQ/csystemsdec.jpg
https://1.bp.blogspot.com/-gaIlaHPcWDo/YU-nbwe9FxI/AAAAAAAADbs/pA8N9p5HG3s4o2CWAfpQyEauRdjYgjSEQCLcBGAsYHQ/s624/gr4.jpg

7/22

It then tests (CDLocateCSystem+22) if the value is zero and bails with an error (+27) if it is. If
the value is anything but zero, then it moves to basic block, starting at offset +9. This basic
block begins by decrementing the r8d register (+9). This code pattern of storing a variable,
checking if it is zero, and then decrementing the value tells us that this is likely a counter for
looping (iterating) through a data structure. Looking ahead, the red line leading from +20
back to +22 in the graph confirms this, as the code at +22 will be evaluated every time the
basic block starting at +9 fails to exit. This is exactly how loops look in IDA Pro and other
basic block graphing tools.

Further studying the basic block starting at +9, we see the address of the CSystems global
variable copied into the r9 register. Next (+13), the value in r8d is copied into eax, and then
rax is shifted left by 7
(+16), which is the same thing as being multiplied by 128 (2 to the 7 power). This computed
value is then stored into r9, and the data r9 points to is compared with the value in ecx (+1D).
If this comparison matches, then the function returns. Otherwise, the flow starting at +9
repeats.

Breaking this down, the code is using the current value of r8d multiplied by 128 (shifted left
by 7) as an index into CSystems. This is exactly what iterating through an array looks like. As
each array element is stored contiguously in memory, by knowing the size and count, you
can successfully locate each element. This understanding of the code now tells us two
things:

1. cCSystems holds the number of elements in CSystems.
2. The size of each CSystems element is 128 bytes.

For the basic block at +9, the only remaining parts to understand are which values are being
compared at +1D and the purpose of that comparison. Since the loop breaks dependent on
that comparison, it is likely critical to the function’s overall purpose. Looking at the two
values, [r9] and ecx, we know a few things. First, the comparison will be comparing two 32-
bit values, as that is the size of ecx, which is the lower 32 bits of rcx. Second, the brackets
around r9 mean to treat the value of r9 as an address in memory and then retrieve the value
at that address, which is known as dereferencing an address (pointer). From our previous
discussion, we know that r9 holds the address of the current CSystems element being
inspected. Dereferencing it as [r9] is equivalent to dereferencing [r9+0], which tells us that
the first 4 bytes (32 bits) of the referenced structure are being accessed.

As for ecx, the instruction at +1D is the first time ecx (or any of rcx) is referenced. This
means the value must have been set before the function was called. Consulting the Microsoft
documentation on function-calling conventions, we see that the rcx register is used on 64-bit
systems to store the first parameter sent to a function. Earlier, when we examined how
Mimikatz called CDLocateCSystem, we noted that the first argument was the
KERB_ETYPE_RC4_HMAC_NT constant, which is defined in NTSecAPI.h of the Windows

th

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160

8/22

SDK as 0x17 hex (23 decimal). This means that CDLocateCSystem will be searching for an
element of CSystems that has 0x17 (23) as the first integer.

Looking at the end of the function (+2E -> +33), we see that r9 is stored into the address
pointed to by rdx; the previous Microsoft documentation tells us rdx stores the second
parameter to a function. We know for CDLocateCSystem that this is the address of where
the calling code (Mimikatz) wants Windows to store the address of the requested
authentication system (RC4).

Seeing that the address of the CSystems element found in the loop is directly returned to the
caller tells us that the data structure returned is also of type _KERB_ECRYPT, since we
know that is the type of the second parameter to CDLocateCSystem. This then tells us that
the integer at offset 0, that is compared in the loop, is actually the EncryptionType member of
structure. This makes sense, since it holds the integer value for the particular authentication
system type. It also means that the elements in CSystems are the ones actually used by
Windows during the authentication process, since these are the ones directly targeted by
Skeleton Key attacks.

In summary, reverse engineering has showed us that the active RC4 authentication system
structure can be located by enumerating CSystems and then looking for the element that has
an EncryptionType of 0x17 (23). This precisely matches how CDLocateCSystem uses its first
parameter to determine which element of the CSystems array to return to the caller. It also
tells us that the type of each element is KERB_ECRYPT, which is very handy since we
already have the definition for this type.

Reverse Engineering the RC4 Structure Origin

After learning how CDLocateCSystem operated, the next analysis step taken was to
determine if the RC4 structure inside the CSystems array could be found directly. While
enumerating the array is not difficult nor time consuming, in memory forensics research we
aim to find the most direct path to data to avoid analysis issues that can be caused by
smear.

To begin this analysis, we wanted to determine how elements of CSystems were registered,
with particular interest in the RC4 system. Examining cross-references (meaning, finding
code that references), CSystems showed only a few locations inside of cryptdll.dll. Of these,
the CDRegisterCSystem function sounded the most promising, as it would hopefully lead us
to RC4 being registered.

The following image shows the decompiled view of this function:

9/22

As can be seen, this is a pretty simple function that first (line 6) checks against the maximum
number of registered systems (0x18), and then bails if already at the maximum. Next, the
function determines the offset into CSystems (line 9) by using cCSystems shifted by 7. This
matches our understanding of cCSystems and the shifting by 7 from earlier. The function
then simply copies in the values from the passed in data structure (a1) into the correct offsets
of CSystems. In summary, whatever values are in the system being registered are copied
separately inside of CSystems, duplicating them in memory.

Following cross-references to CDRegisterCSystem leads us to many references inside of
LibAttach; a decompiled view is shown below:

https://1.bp.blogspot.com/--0d6-KGuUZM/YU-sLvZbOtI/AAAAAAAADb4/ReBsiNuGKJUP3-Yb5LgVhypBeFGRu_8cgCLcBGAsYHQ/s360/cdregister.jpg

10/22

This function is exactly what we were looking for, as we can see all the different systems
being registered. We also see our system of interest, csRC4_HMAC, being registered on line
5. If we examine the data at this address, we can verify this with seeing 0x17 (23) as the first
integer. We learned earlier that this is the EncryptionType targeted by Mimikatz.

https://1.bp.blogspot.com/-n1zcjOHjiEY/YU-s1BapOXI/AAAAAAAADcA/hH-pPhEy55A3a_ySMEwL34nW1JKpaLndQCLcBGAsYHQ/s514/libattach.jpg
https://1.bp.blogspot.com/-AqComlpJOGs/YU-tcCfF5eI/AAAAAAAADcI/Mc8cSGcp1GAONCqRWmiqxYuxk8c6H-9swCLcBGAsYHQ/s408/xref.jpg

11/22

As seen above, not only is the 0x17 (23) present at the first offset, but a little further down we
also see the string defined for the system (RSADSI RC4-HMAC), as well as the handlers for
events the system must support. Looking at the list of functions, we find the legitimate
handlers for the initialization (rc4HmacInitialize) and decryption (rc4HmacDecrypt) routines
that Mimikatz targets. This gives us the specific symbol names that should correspond to the
handlers we find inside of analyzed memory samples.

In summary, this reverse-engineering effort to find the origin structure led us to two import
conclusions. First, even though we know the symbol name of the static RC4 structure
(csRC4_HMAC), we cannot analyze this directly, as a copy of its values will be placed inside
of CSystems. This means we will still need to enumerate CSystems to get the “active”
values, but it also means that we can potentially choose to leverage the duplicate, original
data in our plugin. Second, by knowing the symbol names of the legitimate initialization and
decryption handlers, we can make the sanity checks performed by our plugins as specific as
possible.

With these two reversing efforts complete, we can now start to develop our plugin!

Designing the windows.skeleton_key_check Plugin

Our previous analysis gave us all the information we need to design and implement our
plugin; we saw exactly how the operating system retrieves our desired data structure. As a
direct approach, this would include the following steps:

1. Find the address of CSystems
2. Walk each element to find the active RC4 system
3. Compare its initialization and decryption handlers to the known-good symbols

After the handlers are processed, the plugin would then report whether the handler’s value is
legitimate or if a Skeleton Key attack has been performed.

Creating a New Plugin

To start, we must create a base Volatility 3 plugin that is capable of processing Windows
samples. A major goal of Volatility 3 was to have significant and always-up-to-date
documentation for both users and developers. This documentation is stored on the Volatility
3 page of readthedocs. There is also a section specifically on writing a basic plugin here.

At a high level, all plugins must define their requirements, a run method, and a generator
method. The run method executes first and calls the generator method to create the data

https://volatility3.readthedocs.io/
https://volatility3.readthedocs.io/en/stable/simple-plugin.html

12/22

sets that will be displayed on the terminal (or output in whatever format other interfaces
support). For more information, please see the documentation above.

For our Skeleton Key plugin, we use the basic starting form to then implement the steps
listed previously. Note that the plugin being described in this blog post is already available in
Volatility 3 here. Since line numbers change after each new commit, we instead will be
referencing portions of the plugin by the function name. Also, we will be showing screenshots
of code portions being discussed with the line numbers starting at 1. This will guide the
discussion in a consistent manner.

Implementation - Writing the run Function

The run function is called first when a plugin’s execution begins. The expected return value is
a TreeGrid that the calling user interface will then display for the analyst. The following image
shows the run function, along with the process filter from our Skeleton Key plugin:

On line 12, the return statement begins with the construction of the required TreeGrid
instance. The first parameter to the TreeGrid constructor is the list of columns that the plugin
will display. Each column is specified with its name and type. For this plugin, we have chosen
to display the process ID and name of analyzed lsass.exe instances; whether or not a
Skeleton Key attack was found; and the addresses of the initialization and decryption
handlers. Note that the handlers are listed by their address in memory, which Volatility 3 will
automatically print in hexadecimal due to the format_hints.Hex specifier. This is similar to the
[addrpad] specifier of Volatility 2.

Next, the generator function is called. For plugins that operate on data not made available by
another plugin, the generator function will be called with no arguments. For Skeleton Key,

https://github.com/volatilityfoundation/volatility3/blob/develop/volatility3/framework/plugins/windows/skeleton_key_check.py
https://1.bp.blogspot.com/-8z4le3Tfcww/YU-vvQVlwpI/AAAAAAAADcQ/Ub0hlQNGIM892VzSl5rWZB9K22_ZX5ikgCLcBGAsYHQ/s571/33.jpg

13/22

since we only want to analyze lsass.exe processes, we can leverage list_processes to
perform the filtering for us. This filtering occurs through the use of the filter_func argument,
which specifies a callback that evaluates if a process object should be yielded to the caller.
Our filtering function, lsassproc_filter, is very simple; it only needs to evaluate if the process
name is lsass.exe.

Implementation – Leveraging PDBs

Our reverse-engineering effort showed us that four symbols—cSystems, cCSystems,
rc4HmacInitialize, rc4HmacDecrypt—hold the key data we need to write a complete plugin.
Luckily, one of the new features of Volatility 3 is the ability to automatically download and
incorporate PDB (symbol) files into the analysis flow of plugins. This is accomplished by
locating the PE file (.exe, .dll, .sys) of interest and parsing it with the PDB utility API. Since
cryptdll.dll holds the symbols our plugins need, the first step is to find the DLL within the
address of lsass.exe:

The above image shows that _find_cryptdll—a function that receives the process object for
lsass.exe—iterates through its memory regions (line 12), retrieves the filename for the
current region (line 13), and checks for the file of interest (13-15). Once cryptdll.dll is found,
its base address and size are returned (16-17).

Once cryptdll.dll has been located, its information can then be passed to the PDB utility APIs:

https://1.bp.blogspot.com/-kpSTlCQA1MY/YU-zdYbvqVI/AAAAAAAADco/1R0DAlgBEGgntJj98dNO4FfXtYSn-popgCLcBGAsYHQ/s605/findc3.jpg

14/22

As shown, calling into the PDB API is straightforward, but this actually triggers quite a bit of
activity inside the core of Volatility 3. First, the memory range specified for the PE file is
scanned to find its GUID, which is unique identifier for the file. Next, the local Volatility cache
is checked to see if the PDB for this GUID has already been downloaded and processed
during previous plugin runs. If so, then the cached file is parsed and returned to the caller.

If the GUID is not in the cache, then Volatility will attempt to download the PDB file from the
Microsoft symbol server. If successful, then the PDB will be parsed, converted to Volatility’s
symbol table format, and stored within the cache.

Assuming the PDB is successfully downloaded and parsed, then our plugin has direct
access to the offsets of the needed symbols within the particular version of cryptdll.dll. This
allows us to trivially find their values within a particular memory sample:

https://1.bp.blogspot.com/-CsJFsNn4R3E/YVXci7DnNHI/AAAAAAAADgs/JocC6mvPxMI9ho2000UGMRqRoRgI-gYtACLcBGAsYHQ/s603/aaa.jpg
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://volatility3.readthedocs.io/en/stable/symbol-tables.html#how-volatility-finds-symbol-tables

15/22

The code shown gathers the runtime address for each of the four desired symbols. For the
handlers, we only need their address in memory to compare to the ones in the active RC4
system. For cCSystems, we treat it separately, as we do not want processing to fail simply
because the page holding the count is unavailable.

We also treat CSystems separately, as we need to construct an array type to cleanly
enumerate its elements. Constructing this object requires not only the address of where
CSystems is in memory, but also the structure definition for the array elements. Unlike the
PDB file for the kernel, which includes both symbol offsets and type information, the PDB file
for cryptdll.dll only includes the symbol offsets. This means we need to manually inform
Volatility of the data structure layout. This is performed in Volatility 3 by creating a JSON file
that describes the data structure(s) a plugin requires. You can view this file for the
_KERB_ECRYPT structure here, which was based on the definition from Mimikatz discussed
earlier.

https://1.bp.blogspot.com/-RjYMY6PqLyA/YVTXG4qojWI/AAAAAAAADdc/_tO6D3BhBmcX_ihRtL7B_ENE2AEXFsHVwCLcBGAsYHQ/s616/g9.jpg
https://github.com/volatilityfoundation/volatility3/blob/db2ec8cfb21e0f3f4808bc55b56d27a115263565/volatility3/framework/symbols/windows/kerb_ecrypt.json

16/22

Once the array is constructed, it can then be enumerated as shown below:

Volatility has built-in support for enumerating arrays, so the for loop will walk each element,
creating the csystem variable as the _KERB_ECRYPT type. Before processing an element, it
is checked for being valid (mapped) into the process address space (lines 2-3). Next, the
EncryptionType value is compared with our type of interest (lines 6-7). To determine if a
Skeleton Key is present, we compare the Initialize and Decrypt members of the system
found in memory to the expected values from the PDB file. If either of these have been
modified, then a Skeleton Key attack has occurred, or at a minimum, a modification has
occurred that an analyst would want to know about.

With all of the values computed, displaying the results to the analyst requires just a simple
yield of the data. This can be seen in lines 13-17 and will result in the process name and
PID, presence of a Skeleton Key, and handler addresses being displayed. This immediately
informs the analyst if a Skeleton Key was found, and if so, where the malicious handler
values are in memory.

The following image shows a run of our new plugin against an infected memory sample:

Adding Resiliency to windows.skeleton_key_check

https://1.bp.blogspot.com/-PjfnlekoYWE/YVTdRIB5vOI/AAAAAAAADec/NHccVY2oBYALg9pe1TxcOYnXaavTVhCnwCLcBGAsYHQ/s546/l20.jpg
https://1.bp.blogspot.com/-t6qM1w7T8DM/YVXaaXWfx7I/AAAAAAAADgc/QKNXV6Ap0QcqjCGOelVgL1vOodNq4uOXQCLcBGAsYHQ/s555/outpdb.jpg

17/22

So far, our plugin is able to successfully detect Skeleton Key attacks by leveraging the
cryptdll.dll PDB file to determine where our four symbols of interest are located in memory.
Unfortunately, real-world memory forensics is not always this straightforward, and the data
we would like may not be memory resident or it may be smeared. Thus, it is also
advantageous to consider other approaches.

In the case of leveraging a PDB file for analysis, there are a few situations that could prevent
us from determining which PDB file is needed for analysis, as well as obtaining that PDB file.

1. The page containing cryptdll.dll’s GUID could be paged out or smeared.
2. The analysis system may be offline and unable to download the PDB file from

Microsoft’s symbol server.
3. Although rare, Microsoft has published corrupt/broken PDB files for modules shipped

with stable versions of Windows.

In these situations, we would still like to be able to detect Skeleton Key attacks, but we need
a different approach to gather the required data.

Finding CSystems Without a PDB File

Using knowledge gained from previous work on the plugin, we know that the
CDLocateCSystem function directly references two of the four symbols we need: CSystems
and cCSystems. This means that by performing static binary analysis of CDLocateCSystem,
we should be able to determine the address of these symbols, since the function’s
instructions will reference the addresses themselves. This is a common tactic in memory
analysis and reverse engineering tasks to find symbols that are not exported or where a
symbol file cannot be obtained.

To attempt to find CDLocateCSystem without the use of a PDB file, we parse the export
directory of cryptdll.dll, since it exports CDLocateCSystem by name. The following image
shows how this is performed in Volatility 3:

18/22

https://1.bp.blogspot.com/-3NtuanIJkJw/YVW-jD4TTPI/AAAAAAAADfM/fQdsz9_l15E6Zyn6Kr8NeM32-TgzbKMywCLcBGAsYHQ/s900/bob.jpg

19/22

First, a reference is obtained to the type information for PE files (lines 1-7). Next, a Volatility
3 PE file object is constructed starting at the base address of cryptdll.dll (lines 9-11). This
object contains a number of convenience methods for accessing common data, such as the
data directories. This is leveraged on line 15 to parse the export directory, and then loop
through its exported symbols starting on line 22. The body of this loop then looks for
CDLocateCSystem, and when found, attempts to read the bytes (opcodes of the instructions)
from its location in memory.

If these bytes can be read, then the _analyze_cdlocatecsystem function is called, which
leverages capstone to perform the static disassembly necessary to locate both symbols.
After locating them, it will construct the array object using the same method as described
when the PDB file symbols were used.

Assuming the export table and opcodes for CDLocationCSystem are present, this method
will successfully find CSystems and allow us to locate the RC4 structure as we did
previously.

Finding rc4HmacInitialize and rc4HmacDecrypt

So far, we have been able to locate the RC4 structure without the PDB file. Unfortunately,
there are no direct references to the legitimate initialize and decrypt handlers that we can
leverage. This leaves us with two options. The first option is to verify the memory region
holding the handlers, which will be discussed in this section. The second option is to attempt
to scan for the values, which is discussed in the next section. Each has advantages and
drawbacks, as we will discuss.

Each memory region within a process’s address space is tracked by a virtual address
descriptor (VAD). Information in the VAD includes the starting and ending address of the
region; the initial protection of the region; and the number of committed pages. For
executables, such as lsass.exe and cryptdll.dll, one VAD will track all regions of the
executable, including its code and data. Knowing this, we can check if the values of the
initialization and decryption handlers are within the region for cryptdll.dll. This is shown in the
following image:

This simple check ensures that the value of the handler is within the starting and ending
range of the VAD for cryptdll.dll. Although this check is not as precise as having the exact,
legitimate values from the PDB file, this method still detects all forms of Skeleton Key attacks

https://www.capstone-engine.org/
https://www.sciencedirect.com/science/article/pii/S1742287607000503
https://1.bp.blogspot.com/-GXQLJgMUI3Q/YVXEGberDYI/AAAAAAAADf0/nIaunsjT2KUvXNAUCuqxQr51zCIp0ud4gCLcBGAsYHQ/s610/bob6.jpg

20/22

found in the wild, as they all allocate new VADs to hold the shellcode of the malicious
handlers.

Note: Theoretically, an in-memory code cave could be used to place redirection stubs within
cryptdll.dll and this check would be bypassed, but no malware—in the wild or proof-of-
concept—has leveraged this approach. Furthermore, the PDB-based method and the one
described in the next section would still detect these, rendering them not particularly stealthy.
These types of attacks are also much less portable to differing operating system versions,
which is one of the reasons they are uncommon in the real world.

Adding Scanning as a Last Resort to windows.skeleton_key_check

We currently have two methods to gather the data needed for Skeleton Key attacks: PDB
files and export table analysis. As discussed previously, the PDB file method can be
unavailable for a number of reasons, and unfortunately, the export table method can be as
well. The most common reason for this is the PE header metadata being paged out or the
page(s) holding the export table information are paged out. The end result is that we cannot
use the export table to tell us directly where to look for our needed information.

In these situations, there is a long history of memory forensic tools scanning for the data they
need. Since we have access to all pages that are present within a process’s address space,
we can simply scan them in hopes of finding what we need. In the case of our Skeleton Key
plugin, we were able to develop a highly effective and efficient scanner to meet our needs.

To begin, we used our knowledge that the data we need is contained within cryptdll.dll. This
means we only have to scan a very small space (the size of the DLL). Second, as shown
before, the layout of the active structure starts with the integer for the encryption type, which
we know is 0x17 for RC4. Other research showed that the second member, BlockSize, had a
value of 1 in all of our test samples. Using this knowledge, we developed a scanner based
on Volatility 3’s scanning API:

https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

21/22

The scanner is configured to look for an 8-byte pattern of 0x17 followed by 1 in little-endian
integer format. It attempts to instantiate a _KERB_ECRYPT type at each address where this
pattern is found. To strengthen the check, we also verify that the Encrypt and Finish
members our potential structure reference addresses are inside of cryptdll.dll. Neither of
these are targeted by Skeleton Key attacks and validating their values provides a strong
check against false positives.

The following shows the output of our plugin when the scanning method is used:

Note that there are two lines of output. This occurs beause the scanner finds both the active
version of the RC4 structure and the version that is statically compiled into the application.
Having both outputs provides some advantages: there is direct visual confirmation that the
active structure is hooked, and the statically compiled version reveals the addresses for the
legitimate handlers, even without PDB usage.

Wrap Up

https://1.bp.blogspot.com/-K5HmcNfKBfU/YVXI7_Ka47I/AAAAAAAADf8/lOdSLkckcNchAnE48aQJHZ_7Q9iiTSHigCLcBGAsYHQ/s624/scan2.png
https://1.bp.blogspot.com/-A0un6KlEcpI/YVXa7xdS8FI/AAAAAAAADgk/9_vbDRqHi2wAUnVC_hVQVFe22kFz3OqYQCLcBGAsYHQ/s552/bob5.jpg

22/22

In this blog post, we have walked through the entire process for memory forensics research
and development. We analyzed a target (Mimikatz’s Skeleton Key attack), analyzed the
subsystem it abuses (the authentication systems managed by cryptdll.dll), and developed a
new Volatility plugin that can automatically analyze this subsystem for abuse. This is a
common workflow used to develop Volatility plugins.

If you find this type of research interesting, please consider developing a new plugin and
submitting it to our Volatility Plugin Contest. Note that your submission does not have to be
anywhere near as thorough as the plugin presented here; even submitting a new capability
with just one of the discovery methods (PDB files, export analysis, scanning) used would be
sufficient for an entry. We showed the full range here to display many of Volatility 3's new
capabilities, but we certainly do not expect all plugins to meet this level of complexity.

We hope you have enjoyed this post. If you have any questions or comments, please let us
know. You can find us on Twitter (@volatility) and our Slack server.

-- The Volatility Team

https://volatility-labs.blogspot.com/2021/08/the-9th-annual-volatility-plugin-contest.html
https://www.twitter.com/volatility
https://www.volatilityfoundation.org/slack

