
1/11

Team TNT Deploys Malicious Docker Image On Docker
Hub

uptycs.com/blog/team-tnt-deploys-malicious-docker-image-on-docker-hub-with-pentesting-tools

The Uptycs Threat Research Team recently identified a campaign in which the TeamTNT
threat actors deployed a malicious container image (hosted on Docker Hub) with an
embedded script to download Zgrab scanner and masscanner—penetration testing tools
used for banner grabbing and port scanning respectively. Using the scanning tools inside the
malicious Docker image, the threat actor tries to scan for more targets in the victim’s subnet
and perform further malicious activities.

Criminal groups continue to target Docker Hub, GitHub, and other shared repositories with
container images and software components that include malicious scripts and tools. They
often aim to spread coinminer malware, hijacking the computing resources of victims to mine
cryptocurrency.

In this post, we will detail the technical analysis of the malicious components deployed by the
TeamTNT threat actor.

Alpineos profile - Responsible Disclosure

The malicious Docker image was hosted in Docker Hub under the handle name alpineos, a
community user who joined Docker Hub on May 26, 2021. At the time of this writing, alpineos
profile was hosting 25 Docker images (See Figure 1).

https://www.uptycs.com/blog/team-tnt-deploys-malicious-docker-image-on-docker-hub-with-pentesting-tools
https://github.com/zmap/zgrab2
https://github.com/robertdavidgraham/masscan

2/11

Figure 1: Alpineos Docker hub handle

The Dockerapi image which we analysed had 5,400 downloads within approximately two
weeks of being added. Another Docker image from the repository, ‘basicxmr’ has been
downloaded more than 100,000 times. This clearly suggests that the profile is actively
developing malicious images.

The Uptycs Threat Research Team reported the Docker image hosted in the Docker Hub
website to the security team on September, 30 2021.

TeamTNT threat actor

TeamTNT is a well known threat actor which targets *nix based systems and misconfigured
Docker container environments. Threat actors associated with TeamTNT mostly use open-
source tools in their campaigns, such as XMrig miner, Tsunami IRC bot (a.k.a kaiten) and the
diamorphine rootkit.

The Attack kill chain

The attack kill chain we observed TeamTNT using is shown below (see Figure 2).

https://fs.hubspotusercontent00.net/hubfs/2617658/f1.png

3/11

Figure 2: TeamTNT attack life cycle

The different stages of the attack kill chain depicted above are as follows:

Using the monero-ocean shell script, TeamTNT/Hilde deployed a new malicious Docker
image named Dockerapi which was hosted on Docker hub website.
Using Docker, the malicious image was run with the privilege flag, and was mounted
with the victim host and victim host’s network configuration.
The malicious Docker image had an embedded shell script named ‘pause’.
The ‘pause’ shell script inside the malicious Docker image had commands to install
masscanner and the zgrab tool.
After setting up the scanning tools, the functions in the ‘pause’ script start scanning
rigorously in the victim subnet on Docker related ports for more target virtual machines
(nodes). A node is a part of Docker swarm. A Docker swarm is a group of physical or
virtual machines (nodes) operating in a cluster.
Once the target node is found as a result of the Docker-related port scan in the victim
subnet, the pause shell script runs the misconfigured alpine Docker image remotely
(from the victim machine) in the target node, passing a base64 command as command
line. The command:

1. Generates the ssh keys and adds it to authorized_keys file.
2. Logs into the target node’s host via ssh and downloads the monero-ocean shell script

from the C2 (teamtnt[.]red) into the target node’s host.

https://fs.hubspotusercontent00.net/hubfs/2617658/f2.png

4/11

The monero-ocean shell script in this campaign later deploys Xmrig miner and the
Tsunami IRC bot on the system it is being run on.
The monero-ocean shell script also downloads another shell script (diamorphine shell
script) which downloads and deploys the diamorphine rootkit to the victim’s system.

The diamorphine rootkit consists of features like hiding the pid, syscall table hooking
and giving root privilege to the pid.

Technical Analysis

The monero-ocean shell script
(c21d1e12fea803793b39225aee33fe68b3184fff384b1914e0712e10630e523e) used as initial
vector had the following command to deploy alpineos/Dockerapi Docker image onto the
victim system (see Figure 3)

Figure 3: Command to deploy Dockerapi container image

The command shown above runs the Dockerapi image with the following:

--privilege flag
--net flag to have host’s network configuration inside container
/host mounted inside container image

Using the command Docker ps, we can identify the malicious Docker image runs pause shell
script (see Figure 4).

Figure 4: Dockerapi image runs pause shell script

The pause shell script inside Docker image installs basic utilities and the scanning tools
Zgrab and masscan (see Figure 5).

https://github.com/m0nad/Diamorphine
https://fs.hubspotusercontent00.net/hubfs/2617658/f3.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f4.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f5.png

5/11

Figure 5: Initial setup done by pause shell script

Upon installation of these tools, commands inside the pause shell script start heavy scanning
on Docker related ports in an attempt to target more nodes (machines) in the victim subnet
(see Figures 6,7).

Figure 6: Docker related scanned ports in the victim subnet

Figure 7: Masscan and Zgrab commands used for scanning

Masscan and zgrab

Masscan and zgrab scanning commands are used in the Docker container image for
scanning and banner grabbing. The functionality of these commands is listed below.

masscan 1.0.0.0/8 -p2377 --rate 50000

The masscan works much like nmap utility which is used for scanning target IPs. In this case
masscan scans with a rate of 50,000 pks/sec which is a huge rate against the port 2377.

zgrab --senders 200 --port 2377 --http=/v1.16/version --output-file=-2>dev/null

https://fs.hubspotusercontent00.net/hubfs/2617658/f6.png

6/11

The zgrab tool is used for vulnerability scanning and part of the zmap project. In this case the
attacker used zgrab with 200 send coroutines (threads) for banner grabbing and saving the
IP addresses with target opened ports in an output file.

Alpine Docker image deployment

As a result of scanning, once the target node is found, the command inside pause shell script
performs the following:

1. Remotely runs the alpine Docker image with full privilege and host mounted on the
target node.

2. Uses a base64 encoded command which adds newly generated ssh keys to
authorized_keys file.

3. Using the same command, logs into the target node’s host with ssh and downloads the
monero-ocean shell script in the target host (see Figures 8,9).

Figure 8: base64 encoded command passed with misconfigured alpine image

Figure 9: Decoded base64 - Monero-ocean shell script getting downloaded and executed

Xmrig miner, IRC bot and DiaMorphine Rootkit

The monero-ocean shell script later deploys Xmrig miner and the Tsunami IRC bot on the
system it is being run on (see Figures 10 and 11).

Figure 10: command to download XMrig miner

https://fs.hubspotusercontent00.net/hubfs/2617658/f8.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f9.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f10.png

7/11

Figure 11: command to download IRC bot

The IRC bot in the victim machine communicates with attacker C2 over port 8080 (see
Figure 12).

Figure 12: IRC communication on port 8080

Alongside this, the monero-ocean shell script also contained the command to download
diamorphine rootkit shell script (see Figure 13).

Figure 13: command to download diamorphine shell script

The diamorphine shell script
(418d1ea67110b176cd6200b6ec66048df6284c6f2a0c175e9109d8e576a6f7ab) deploys the
diamorphine rootkit in the victim system (see Figure 14).

https://fs.hubspotusercontent00.net/hubfs/2617658/f11.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f12.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f13.png

8/11

Figure 14: Diamorphine Rootkit getting compiled and deployed

The diamorphine rootkit consists of features like hiding the pid, syscall table hooking and
giving root privilege to the pid (see Figures 15 and 16).

Figure 15: cr0 WP bit modification for syscall table hooking

Figure 16: Hooked syscalls (getdents and kill)

Uptycs EDR detections

The Uptycs EDR armed with YARA process scanning detected the malware components
involved in this campaign with a threat score of 10/10 (see Figure 17,18,19). In addition,
Uptycs offers the following abilities to secure your container deployments:

https://fs.hubspotusercontent00.net/hubfs/2617658/f14.png
https://github.com/m0nad/Diamorphine
https://fs.hubspotusercontent00.net/hubfs/2617658/f15.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f16.png

9/11

Uptycs integrates with CI/CD tools so that developers can initiate image scans at build
time to detect malicious container images before they are deployed to production.
Uptycs continuously monitors and reports on compliance with the CIS Benchmark for
Docker to identify misconfigurations that attackers can exploit, and offer remediation
guidance so that your team can quickly fix those issues.

Figure 17: Uptycs EDR detection

Figure 18: masscan command captured by the Uptycs EDR

https://fs.hubspotusercontent00.net/hubfs/2617658/f17.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f18.png

10/11

Figure 19: zgrab command captured by the Uptycs EDR

Conclusion

Docker containers have become an integral part of the organisations. A lot of services
nowadays run in isolated Docker containers. The threat actors on the other side are also
trying to deploy malicious components to escape Docker containers and target host
machines and the other nodes connected in a subnet and its swarm. Hence, to maintain a
robust security stance, it is crucial to be able to detect malicious images early in the CI/CD
pipeline as well as monitor all the container activities in runtime.

The EDR capabilities of Uptycs empowers security teams to detect, investigate attacks in
their Docker infrastructure.

Credits: Thanks to Uptycs Threat Research Team members for their inputs and research.

IOCs

c21d1e12fea803793b39225aee33fe68b3184fff384b1914e0712e10630e523e monero-ocean
shell script

418d1ea67110b176cd6200b6ec66048df6284c6f2a0c175e9109d8e576a6f7ab diamorphine
shell script

497c5535cdc283079363b43b4a380aefea9deb1d0b372472499fcdcc58c53fef pause shell
script

0534c5a5cde1e7d36103b690152a1b426fa87d15b3c4ff59b5bc988b99c3aaaf Xmrig miner

https://fs.hubspotusercontent00.net/hubfs/2617658/f19.png

11/11

fe3c5c4f94b90619f7385606dfb86b6211b030efe19b49c12ead507c8156507a IRC bot

teamtnt[.]red C2

45.9[.]148[.]182 IP address hosting the IRC bot

Want to learn more about what threats you need to be on the look
out for? Download your copy of the Threat Research Bulletin.

Tag(s): threat intelligence , threat management , threat research

Siddharth Sharma

Siddharth Sharma works as a Malware Researcher at Uptycs. He specializes in Malware
Analysis and Reverse Engineering on Linux and Windows platforms. He has worked as an
Intern at CERT-In. His blogs have been published in well known security magazines.

Connect with the author

https://cta-redirect.hubspot.com/cta/redirect/2617658/6ce55455-9860-444c-92f8-1e1cba42654c
https://www.uptycs.com/blog/tag/threat-intelligence
https://www.uptycs.com/blog/tag/threat-management
https://www.uptycs.com/blog/tag/threat-research
https://www.uptycs.com/blog/author/siddharth-sharma

