
1/20

Threat hunting in large datasets by clustering security
events

blog.talosintelligence.com/2021/10/threat-hunting-in-large-datasets-by.html

Watch Video At:

https://youtu.be/5nFIgAN5Nq4

https://blog.talosintelligence.com/2021/10/threat-hunting-in-large-datasets-by.html
https://youtu.be/5nFIgAN5Nq4


2/20

 
By Tiago Pereira.

Security tools can produce very large amounts of data that even the most sophisticated
organizations may struggle to manage.
Big data processing tools, such as spark, can be a powerful tool in the arsenal of
security teams.
This post walks through threat hunting on large datasets by clustering similar events to
reduce search space and provide additional context.

 

Introduction

 
Cisco Talos processes 1.5 million new pieces of malware each day. Converting such a large
dataset into actionable intelligence requires a combination of automated tools to process the
data, and human ingenuity to spot the data that stands out.

There is a limit to the amount of information that humans can process. Even the most
sophisticated organizations may struggle with the sheer amount of data generated from
modern security systems — hence the need for data-processing tools to reduce this vast
amount of data into manageable information that can be processed manually, if required.

As an example, we'd like to walk through how we hunted for new threats by using a big data
processing tool/library — Apache Spark — to group large amounts of suspicious events into
manageable groups. This technique may be useful to organizations of all sizes to handle
large amounts of security events efficiently, or it could inspire some ideas to improve existing
tools.

Clustering data

 
We'll describe a technique Cisco Talos uses to create clusters from a dataset of suspicious
event logs that have been generated by our own tools. This will group items into clusters of
similar, but not identical, events or sequences of events. Since we are searching only for
similar items, the events don't need to be exactly the same to be grouped together. Small
differences such as usernames, paths, capitalization and commands are accepted in similar
events. This allows us to transform a massive list of security event logs into a manageable
list of groups of similar events that can be processed by an analyst. The groups won't always
be perfect. However, they are better for human processing, and humans are very good at
dealing with imperfect data.

https://www.google.com/url?q=https://twitter.com/t14g0p&sa=D&source=editors&ust=1633368289972000&usg=AOvVaw0KZ3ZY2zV3jK39qbIqBhe0
https://www.google.com/url?q=https://spark.apache.org/&sa=D&source=editors&ust=1633368289975000&usg=AOvVaw2l5aRkTvFHtfLgIGBYItuK


3/20

Although we use data generated by our own tools, the method described is generic and can
be used by organizations of all sizes and on varying datasets from several sources, such as
Windows logs, security solution logs (e.g., SIEM, Cisco Secure Endpoint) or proxy logs. The
only requirements for this method are an available Spark cluster and data stored in a
medium that is appropriate for Spark, such as CSV or JSON files in a cloud or a large
physical storage system.

It is also worth mentioning that the method shown here is not the only clustering option.
However, it uses algorithms that are suited for processing very large volumes of data, is
generic enough to be easily adapted to different datasets, and only makes use of the free
and convenient available Spark libraries.

Preparing data for clustering

 
The base concept of the system is very simple: We represent each of our items as a set of
"tokens" and then compare how similar the set derived from one item is to the other sets.
This allows us to find items that are most similar to each other, even if they are subtly
different.

These "tokens" are very similar to words in a book. If you represent a book as a set of words,
you can identify books that can be grouped together based on the words they share. With
this technique, you could group together English-language books or ones written in Spanish
or German. By applying tighter criteria for clustering, we can identify groups of books that
mention "malware," "computer," or "vulnerability" separate from another group that may
mention "Dumbledore," "Hagrid" or "Voldemort."

However, before any clustering takes place, we need to load and prepare the data for
processing.

The first step is to load pyspark and import a few necessary libraries:

 
CountVectorizer is part of the machine learning package pyspark.ml and transforms the data
into a format that is used by many ML algorithms. The MinhashLSH package will be used to
reduce the amount of data that needs to be processed and to calculate a set of similar event
pairs. The graphframes library is a pyspark graph library based on Spark dataframes.
 
Once the environment is ready, we will start by loading the data and immediately start
transforming it. The first commands follow:

 

https://blogger.googleusercontent.com/img/a/AVvXsEgk1VoAXlbw7OhITb4WfkSypwC8m--4XL_VvuKfpluOzok0vdckEs8ByqWOWRZpsYxxK9ca8d1au_hQxt2MSEi4tABZO-E63DM0ys0J8lKjXBvya-ZFkreGgPNkcBNen65sSmrwhNZZWanpNTuNr19wfJr7t4f4pqwpxUs7lAdzUW682Mis9FGz4o6NTg=s732
https://www.google.com/url?q=https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.CountVectorizer.html&sa=D&source=editors&ust=1633368289980000&usg=AOvVaw2JGvMCfdyI4fevihEHvGu5
https://www.google.com/url?q=https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.MinHashLSH.html%23pyspark.ml.feature.MinHashLSH&sa=D&source=editors&ust=1633368289981000&usg=AOvVaw1bVT3S2gLAv08QqWKoO9oY
https://www.google.com/url?q=https://graphframes.github.io/graphframes/docs/_site/index.html&sa=D&source=editors&ust=1633368289981000&usg=AOvVaw21yQm3ehy4qSp3BRt13QM6


4/20

 
On the first line, the data is read from its path using Spark's read method. On the second
line, a set of functions are called that concatenate the short_description and argv fields, then
split them by each non-alphanumeric character and finally "explode" them, creating one row
per word. Finally, on the third line, the words are grouped by the system where they were
seen. As a result, for each agent, we will have an array of words that were used in its
command line.
 
The following image shows the resulting table, with the systems and the commands broken
down into words:

 
 

Encoding the data in the correct format

 
Most algorithms from machine learning libraries need the input data in a specific format. In
this case, the Minhash algorithm requires a numeric vector of features, so we'll use the
CountVectorizer function, which will transform all the unique words present in each of the
events into columns. Events are described by having the count of occurrences of each word
on the column corresponding to that word. For example, imagine that each event contains
only one word, as in the following table:

https://blogger.googleusercontent.com/img/a/AVvXsEjoxbcMRb7mDOzLFLGqKUYZ4TesniS2GQKZEJxPK0YTNm4MG7FWF4cBncRokpBOE8GtKRbnFmk_EBuXuWfyYPQBrsZrMqsSlYN27MkTe2ayxEh7hAN4nSeALIkPdwE9HVFriM9N1cHSZOe5z0Ud9AedK4sae2SwHtHPBoRCxcnW9PXDCXYd4qV6TcxaAg=s809
https://blogger.googleusercontent.com/img/a/AVvXsEhm2d_1UkhfuWZSsk-QzgC6Q0GKu0bPvsdRTnVRNnrGyLID9A_O27C30BpS2Y5d8UppE0TpXnkG6pJ-7QmC2uyRr7TJv48azmXVsbnh3OF-poBsoKt5MhbSX9p4sOlZ-84t-9oTECNtBvJZSER6k6P7GtbohI3_75D3KiedDUKoPXhkdF5e03EzNw-s2g=s427


5/20

 
After using the "CountVectorizer" encoder, the event table would look like this:

 
Starting from the tocluster dataframe shown above, the following code shows the operation
of transforming this data into a vector of numeric events by adding a column called "features"
to the dataframe.

 
This will result in a massive vector, with a huge amount of information that will require a lot of
processing power. Luckily, this can be solved or at least improved using Locality Sensitive
Hashing, as we will see in the next section.
 
The following image shows the resulting data frame, with a features column, that contains a
numeric vector of the counts of each word:

 

https://blogger.googleusercontent.com/img/a/AVvXsEi-MRCrblHNEQ63QpJmopzCv_uy6qN4StHgIy713YtG0ylBmEje-E-0ijjiPx6n0vr8dMlkCvGXMHAWKzX0SrHzLc3ckjyKLyEYhDsOu7QFmuJmsQkTgYcLUZD-62d22MtGVAFzVdojTGnRwaks10g-QNeamW_to6PjOesKsYoZniiTU9q1H_KBUlNgUA=s500
https://blogger.googleusercontent.com/img/a/AVvXsEj9dlp5dh5Zba95IbqL7inpA8xMLl1oyzdW6Nsk2dWSqf7FEGnLWFDOWdDf4HdnAzHnPrLl7zbKYHJaHnCF-EVb0kGEvT9_47DsumHXfwFtSBvymh0BF6a09ARnn8EILhYwZxiK2JGut5Nn7-SgnYa1fc7U5E0RqW129G899f725XhwTYysew_uZgRTxg=s1000
https://blogger.googleusercontent.com/img/a/AVvXsEhcuNQxbHYhY39DnxxlTe261nwCEF4b26myy0YligSURAgvnVZltmeJPPo_u_P6_m88pjhIUQSyODeybj34-mkNBdyDZuU06jrZTKoZ4MrglDvcbtOhQZtmSg1zcKaTRhZy6RSbHYZ7Yk5JKGFRzpqexn9APsKRupA3AGoi_1HSkaytl_ACMRXCFlsHdw=s825


6/20

 

MinHash LSH

 
Locality Sensitive Hashing (LSH) is a fairly complex topic. However, Spark has some nice
machine learning libraries that allow users to use the power of the technique without having
to know all the details.

Unlike other hash algorithms, LSH seeks to maximize, rather than minimize, hash collisions.
Therefore, the user can compute a set of LSH hashes for each event where the number of
common words or features between different events we use to cluster similar events is
represented by the number of common hashes. This means that we can then discard the
enormous amount of feature columns and use only a few hashes to calculate the similarity.

The use of Minhash LSH makes it possible to calculate the similarity of very large datasets,
using Spark's power for distributed processing in a large number of systems. Trying to use a
simple machine learning library on a single system to cluster this amount of information
would be almost impossible.

The code section using MinHash LSH is shown below:
 

https://blogger.googleusercontent.com/img/a/AVvXsEicWOda9cPtxJ5I-0BLDUR5U1JZx0TE-RnsrNrTfiTFsuqMuaLIFILlGOqo8OBiuHwY3wd4-ol9X7tsS2IoGIpUmmV_15IYE2Mli3ej3-tA9-aYdeVB_s9JIgnDRcqWweQgj9BwG2oxuuDqROvPxMFN0B2bdBcB2IN3OtChfhCNzdo3Y7B8qVgJWz8YoA=s427


7/20

 
In this case, we used 10 hashes. There is a tradeoff between the processing time and the
accuracy of the system by increasing the number of computed hashes per record. More
hashes would return more accurate results but require more processing time, while fewer
hashes would return less accurate results while requiring less processing time.
 
Although there are complex ways to select the optimal value, for manual threat hunting, a bit
of trial and error is usually good enough to arrive at a number of hashes that work. The
following image shows the data frame with the resulting hashes. Now, instead of a huge
vector, we have only an array of length 10 on each row that needs to be analysed.

 

 

Computing similarity

https://blogger.googleusercontent.com/img/a/AVvXsEhmvUQQFm-VxZv3WSuc5LkM2bxI_K9FLHHVE4YsL8dqGScOAaX3IJLyv7W9mB74PAILRX5pj5Dwk4y1zyN857OGlg_3eGlirEI-R5CADdk_JBvuwTerFcKuPhYh53vBRpPE8aMn5wAvCdUEt9q_mQiV41QNraQuTIlMqv1g8i-uVuw6EqZJR5F0KtlpQg=s767
https://blogger.googleusercontent.com/img/a/AVvXsEhd11pBoBez0GUMrz9pJSIpYaPydFIFbwifS6aX8N7AdOcPd5ENyK3hsG1zDdl0OCuHu0F4NqsMkCb1L-nsqk2ndqoGj3dWffz700kjxlORS4hLfcDQRNsGY35uprqpk2Mmc3gsB8i8fT4JLlVXX33UEG5t5XOW7lynLZMkm1uqA03wH4wFH6ZcpPE9Fg=s429


8/20

 
There are many techniques to calculate the similarity between events. In this case, we
calculate the Jaccard distance between events to determine what is similar and what is not.
This means calculating the number of words that A and B have in common and dividing it by
the set of words they don't have in common. The code to compute the similarity between all
the events is:

 
We have to decide how similar two events have to be before we cluster them together. In this
case, we use the value of 0.2 as the maximum Jaccard distance between events that we
require to consider them similar. Zero would mean exactly equal events and one would mean
completely different events.
 
After selecting this value and preparing the data, we must define the quality of the clusters. If
they're too small we will have too many clusters to work with. If they're too large, we'll have a
few low-quality clusters containing relatively different events. The choice of value is
dependent on the nature of the dataset and the objectives of clustering. Again, some trial
and error is required to create the most useful clusters for each case. The following image
shows the resulting table of similar pairs:

https://blogger.googleusercontent.com/img/a/AVvXsEjUc1MaPSwIAmjz7N7Mm6Jcyb4iexgG41Em8IaNxSRTBffyR7qXgUFZKaquppqd6qRys63tC4hzXJXC781Kg6eJg0E4PiOseRIDDyVUsYSSjzm33I_xxkOqow5pmxq9lbXZLzzMlB0zWXYYjiYLBl6zE9Zbehvw3KbK7nG3-Ilxw50bJAN2-fX2TjRuCw=s767


9/20

 

Grouping similar events

 
After calculating the similarity between events, which essentially cross-joints the table, we
have a huge table with pairs of similar events. We can query for events similar to any
particular event very quickly. However, what we are really after is a limited number of groups
of similar commands.

There are many ways to do this (as there are with all parts of the presented method), but
here we'll identify communities of connected points in a graph.

We used a very powerful Spark library called "Graphframes". This library works with the
relationship between nodes (or vertices) and their connections (or edges) and executes
known graph algorithms to extract information from these relations.

In this case, we used its connectedComponents algorithm to group sets of similar nodes.
The image below shows a theoretical example of how this would look.

 

https://blogger.googleusercontent.com/img/a/AVvXsEikfai94Y_MxLzfqRTIdD_uuyz3oI00E7QBC8BVrlf2kl7X3rV5agocxhroee_5n9T-w4LQCmZI9KgyOn6Kq6szA7Cjh4RzReAuHYDoGKUMeKW_v4rMWWYIB7ofOyoAC-S9AqsKn1v-2QNOH7yMWH-WENVy4MQslWKKj3mEIIJ6BTm7aXLt3RlojBnbZA=s543


10/20

 
In the example above, there are two communities and a singleton. The blue community is
very straightforward as all the nodes are similar to each other. The H node is only similar to
itself, so it is a community of one. And finally, the yellow community shows that although
there is no specific similarity between B and C, they are part of the same community since
there are similarities between other members of the same community.
 
The following code computed the communities of similar event pairs calculated in the
previous step.

 

 
The "v" variable contains all the node IDs, and the variable "e" contains all the similar pairs
calculated in the previous step. After creating a GraphFrame object with these values,
calculating the communities is as simple as invoking the connectedComponents method of
the Graph object.

 
The following graph shows the communities that the described methodology generated.
Each dot represents one system and, as expected, the communities are not connected to
each other. There are various communities with different sizes and colors. Either way, the
most important aspect is that the search space for a human researcher was reduced
dramatically.

 

https://blogger.googleusercontent.com/img/a/AVvXsEjwET4mKZRhyRzj0gpjXqcGEtILrqPpvyQJdl1QL2YYQtcVsYxStlOKvNy4XCR-OfjCSj8j1GAOTydv1hIIXbuLyoWjdLPXBIReW4c-z6bGUaBHyxvluin5MoNUsFRxB60-RqE4eLH0a5B4ksIizL55WZzW9q0EEFe4uEULX1_PEgcnVUZPFZmjpKoSUQ=s1459
https://blogger.googleusercontent.com/img/a/AVvXsEgdqLhPNUS0gkuQtLX7CrE4hSAtSO4u6JOsFpnIIlrzYDXylcmrgl7yDC1NywxIEl8_bM0mlW3B5TRz4OKYhZkmasYqs-gA-RKovaSiO34S1WFba42jFu5sM2brRXabXhFlzznqWXJ4UUFfwNRGHRUn9-k_pjYLzM6OjtYrSWslzkCXMm4MJO8ERTTC3w=s670


11/20

Digging into the results

 
Now that we have a set of clusters to research, we'll perform a deeper analysis on three
representative clusters that highlight different attributes of the described method.

Summarising the examples that follow:

The first example shows how a community of similar but not identical commands was
found that contained one common strange word.

https://blogger.googleusercontent.com/img/a/AVvXsEjBs3kQIMETUSysoQZddc7ZTSOxdfxjT9yMPR75UBNG_srfc2g5-wyzJkb-JYoVUhrvwxDqnG23IxjnMlZeGpoqr_k4oaBdubvHxwwRZrxtZRAV9f3TO2scLCStCZpNkyCTrg_l9wIOptOKbbSb1q3IfMH1Ig1kJ0LsrbM2cNqTGeTZCFcPx4l3BNZOMg=s1076


12/20

The second example shows how a choice made previously in the way the data was
prepared for clustering produced a useful result with "better" clusters and how the
system was able to isolate a few attack patterns.
Finally, by limiting the clusters to only those that have only recent occurrences, we
detected a relevant change in the behaviour of a known financially motivated threat
actor.

 

Example 1: Who IsErik?

 
This cluster stood out to us:

 

 
The first thing that's unique is there's a common string to all the events — "--IsErik" — that
begs the question: Who is Erik and what is he doing in these systems?

 
Identifying the threat that these events relate to is pretty straightforward. A quick Google
search for the "isErik" string reveals numerous articles describing it as an artifact of a known
persistent adware family.

What is interesting about this cluster, and the reason it was selected as an example, is that
the name and path of the file that wscript.exe executes, as well as the hex values that follow,
are different for each event. This shows that the clustering system is doing its job of
accepting small differences.

https://blogger.googleusercontent.com/img/a/AVvXsEj-THTzRuZq6U-w6V_IKSccsT0iqSgH3jKFB6p-5zhiZ8vBIuNMoGMrML6kAI4-uA9zjCfMUt097esMDawDNwoc9r6Ls7EYzYTbFHHQKzk3dp1Pm9PqGCFury9v254Se2Hw_Yg9LB2bLwJsC8IxY5tJkbbFaR7u9--JvU6ln2hDQ9h3DRW3vOcCl-1HAQ=s1807


13/20

Example 2: Hiding a miner on Exchange Servers

 
We'll also look at a set of clustered events that demonstrates the importance of selecting and
preparing data before clustering. It may seem strange that a set of completely different
commands were joined into the clustered events below.

 

However, this was intended — all the commands run in a host started the clustering, not a
command-line event. So we'll group the words with the same commands on a host. As a
result, the clusters contain not only groups of similar commands but also groups of similar
command combinations.

 
This has one big advantage: context. Different attacks are grouped separately. Even when
some of the events are similar between groups as, for example, when multiple unrelated
attacks are exploiting a common vulnerability.

So, what attack does this cluster reveal? Performing further analysis on one of the affected
systems we observed the following sequence of events:

 

https://blogger.googleusercontent.com/img/a/AVvXsEjIzzYkgcXcXmlaIyNUdcNfoiIRoOd4bFm4rSjqw3y4MG8l032pPDQBFpKGVJXdbn3NQAZfvTo4DW88VbMiG3cwXYBEs6RbWLkyqIe2mAhm4gQ0SgUV1s_2bF0921LSQgCMFwfZ-P2eRdI8ahUh8L3bBGHghy1GmFHjzuOhU2pZmD1eFI_0Oeya2sZ8Ww=s906


14/20

 

Attack vector

 
W3wp.exe's execution of a cmd.exe was our first sign of suspicious activity. W3wp is the IIS
worker process also used in Exchange servers. Knowing that this server has an internet-
exposed Exchange Server and the numerous critical vulnerabilities recently published and
widely exploited, we can assume that this is the attack vector: exploiting one of the
Exchange vulnerabilities.

Installation stealth and persistence

 
The first command executes a base64-encoded PowerShell payload that can be decoded
into:

 
The command contains minimal obfuscation and appears to be attempting to download and
execute something from the URL https://122[.]10[.]82[.]109:8080/connect, taking special care
to set a specific user agent, possibly to evade automatic analysis of the URL.

 
The additional PowerShell code is responsible for the remaining installation and execution.

https://blogger.googleusercontent.com/img/a/AVvXsEg9IEaCmP67s0TKH_-ctVwI6dvXG0zhZgmqLVlS9cHuDjMekmkZRBjSOIiKGw-N6y98jmSDK1lXqxspooIgZfcgZWR6SkTgwLJDr_yxXb9ZW2ZXIlnz857pn63FHsGN9xc9d-2Du3XvWtx46u0tBsbqxdQ_HVSrSrP7zYXh42NZljCPmip0o0X_cEhIeg=s1459
https://www.google.com/url?q=https://blog.talosintelligence.com/2021/03/defending-microsoft-exchange-from.html&sa=D&source=editors&ust=1633368290008000&usg=AOvVaw2TBhEpSjp-m4v05r131xyl
https://lh3.googleusercontent.com/-lZpvqzrehys/YVs8bducNzI/AAAAAAAAAI4/IpVWmhxsNfQ6_aO-VXVR1MPr5BvpPGhMgCLcBGAsYHQ/image.png


15/20

It downloads the final paypload and writes it to the file system as
C:\ProgramData\Microsoft\conhost.exe. In the following steps, the script deletes PowerShell
logs and registers the final payload as a Windows service using a long command line with
some strange permission settings:

 
A quick Google search reveals that these are used to make the service hidden and
unremovable using the regular Windows administration tools, without some additional
actions.

Final payload

 
Finally, the C:\ProgramData\Microsoft\conhost.exe file (the same one that is used for the
hidden service) is executed by the process powershell.exe.

This file (sha256:
81A6DE094B78F7D2C21EB91CD0B04F2BED53C980D8999BF889B9A268E9EE364C) is
XMRig, a known cryptocurrency miner. We can confirm this by looking at its communications
and pool login ID.

 

 
While this attack is not particularly sophisticated, it uses some interesting tricks to hide and
persist its execution in the system.

It's interesting that these events were grouped even though they were not very similar and
other attacks against Exchange Servers that have similar initial access commands were not.
By looking at this technique, a researcher could identify the different types of ongoing attacks
against Exchange Server.

Threat actor TA551's Bazar

 
This final example highlights how clustering can be done in a time-bounded way, to reveal
only attacks happening on a restricted time frame. In this case, clustering was limited only to
what happened in the last few days. As a result, the recent clusters brought our attention to a

https://lh3.googleusercontent.com/-8AlNWR19JAA/YVs8ywzzFgI/AAAAAAAAAJA/6zqpBNJzoXkkmmF03HelxhHYa0QbUgm4QCLcBGAsYHQ/image.png
https://www.google.com/url?q=https://www.sans.org/blog/red-team-tactics-hiding-windows-services/&sa=D&source=editors&ust=1633368290017000&usg=AOvVaw3O9VjoBVshgKOItEuyeBU_
https://www.google.com/url?q=https://www.sans.org/blog/red-team-tactics-hiding-windows-services/&sa=D&source=editors&ust=1633368290018000&usg=AOvVaw0ZQyuHbPrvlWWNJP6CMB14
https://www.google.com/url?q=https://blog.talosintelligence.com/2020/01/vivin-cryptomining-campaigns.html&sa=D&source=editors&ust=1633368290019000&usg=AOvVaw0rirrHSjKs-oGJu32oiBE1
https://lh3.googleusercontent.com/-Dkq51EIsvew/YVs9AQHbmZI/AAAAAAAAAJE/dhHVjL3crtkseG1JO3PUkXM7Rh_uIiHKwCLcBGAsYHQ/image.png


16/20

malware campaign by a known threat actor that, once further researched, showed some
changes in the actor's usual activities. We started by looking at the following listing of the
cluster events:

 
The cluster contained a suspicious combination of commands, using DLL files with a JPEG
extension and registering them as services (IcedID is known to have been distributed this
way). However, after analysis, we concluded that BazarBackdoor was the actual malware
being distributed in this campaign, and, based on the TTPs, that TA551 was the probable
adversary in this case.
 
Additional analysis on one of the affected systems uncovered the following sequence of
relevant events:

 

https://blogger.googleusercontent.com/img/a/AVvXsEjHzTg-MqtqB-Ars1fLcBfEbRgDOIlwVPbvTlT_R-67zxtzE_FEK3iX2yfuNr7ZWecW6mtfTKmj67-NPXbUNws_y5z7Bz9zMtKy8jbuo0VhV6Lo2nxkUq3U2eWcD8yzlZExyMHchHDA2FZ1jMjwg_l95xWoOugDqimgCUp-Ku0BExzi8zCm4eJWKH5Qdg=s679


17/20

 

Attack vector

 
As can be seen in Steps 1 and 2, the attack started with an email with an attachment. A ZIP
file named "request.zip," containing a .doc file named "official paper,08.21.doc." This ZIP file
is encrypted to avoid detection by email protection systems.

Malware installation

 
When the .doc file was opened, a macro wrote an .hta file to disk and used mshta.exe to
execute its contents.

The .hta file is the downloader that connects to the server on 185[.]53[.]46[.]33, downloads a
file and writes it to disk as a .jpg file and registers it as a service using regsrv32.exe. The .jpg
file is actually a .dll file that contains the backdoor to be installed on the system.

Bazarbackdoor

 
Once executed, the DLL (devDivEx.jpg) connects to the host 167[.]172[.]37[.]20.

With OSINT, we found several samples with similar names (devDivEx.jpg) that connect to the
same host. We identified these with memory analysis rules and by the use of a DGA with the
.bazar TLD as being Bazarbackdoor. The following are examples of these samples:

C96ee44c63d568c3af611c4ee84916d2016096a6079e57f1da84d2fdd7e6a8a3

https://blogger.googleusercontent.com/img/a/AVvXsEjQ0sSInl7_u7wEMD7a2SXzE-RVQrTzD_PVQkepVZq6a38gr0dZf8QJpcFarcqw9LSWI1V0vnf3aMQ_DyJpvDGc6KDDH6vUupkXFI_A-8MOsEv87Nmx1z6ziVsTxHFHpOAZdzsRn2tiziiAbYSOB0bdamCllJhfuS5Ee8ivYqjjAd6U5crjswrGzYc2Fw=s1459


18/20

f7041ccec71a89061286d88cb6bde58c851d4ce73fe6529b6893589425cd85da

The Trickbot installation

 
Around one hour after the Bazar infection occurred, the svchost.exe process started
performing additional suspicious activities:

 

 
As shown, svchost.exe (which was running the Bazarbackdoor process) writes a DLL file to
disk, and starts it using rundll32.exe. A few seconds later, the rundll32.exe process starts
connecting to the IP addresses 103[.]140[.]207[.]110, 103[.]56[.]207[.]230,
45[.]239[.]232[.]200.

These IPs are easily identifiable through OSINT as Trickbot C2 IP addresses, and multiple
Trickbot samples can be found connecting to them on public sandbox execution reports.

The threat actor

 
We found that there are several of the attacker's TTPs that are similar to those of the threat
actor TA551, leading us to believe with moderate confidence that this is the threat actor. For
example:

 

The request.zip file name.
Use of email with encrypted ZIP attachment.
Use of Microsoft Word macros.
Use of an HTA file as downloader.
Use of DLL with a .jpg extension in the c:\users\public directory.
Registering the JPEG file as a service.
The format of the commands used to perform each of these activities.

https://blogger.googleusercontent.com/img/a/AVvXsEhtE2bP9xt-RdEx53z6L8YBtK1bqBFxg2Jz42bxYV1z60EgdRrO1UkyfjIAhLL0xSBt0MoQt0s2xBxh8xOrNMNzdmCJgWFcxltLovea6TLq2gnLuJ-6UznD7qFWThdBMW1UtIRruFUWfqW8dgXlKTh-ZkkyhRqGCZjfZOjdRopPW-Dn1u_D2KSMDbaUFg=s1459
https://www.google.com/url?q=https://blog.talosintelligence.com/2020/03/trickbot-primer.html&sa=D&source=editors&ust=1633368290041000&usg=AOvVaw1v0zgI6LtD5Z8HaSpUw8wy


19/20

While searching for a match for the observed TTPs and IOCs, we found that this has also
been observed by other researchers who recently tweeted and blogged about TA551 starting
to drop BazarBackdoor and Trickbot.

TA551 is a known, financially motivated attacker that distributes several other malware
families in the past (e.g., Ursnif, Valak, IcedID). Distributing BazarBackdoor is a fairly recent
change that deserves network defenders' attention. This example demonstrates how, by
selecting only recent clusters, it is possible to identify threats that are happening recently.

Conclusion

 
As attacks become more frequent and impactful, one of the most powerful weapons that
organizations have is data. Security is not something that you can master by purchasing a
single software or hardware solution. Several layers of defense are needed, and still, attacks
will get through occasionally. Without data, security teams are blind to ongoing and past
attacks that may have passed the existing layers of protection.

Security tools can produce very large amounts of data. Thankfully, there are several great
tools that help with querying large volumes of data with more or less flexibility. At Talos,
Spark is one of the tools we use, for its flexibility and ability to handle very large data sets..
These data processing tools should be a powerful tool in the arsenal of security teams and
this blog post walks through one technique we use that we find particularly useful. Hopefully
after reading it, it helps "spark" a new idea for data processing or "spark" the interest to use
and explore these tools.

IOC's in this post

 

Samples:

 
XMRig Miner:

81A6DE094B78F7D2C21EB91CD0B04F2BED53C980D8999BF889B9A268E9EE364C

BazarBackdoor:

C96ee44c63d568c3af611c4ee84916d2016096a6079e57f1da84d2fdd7e6a8a3

f7041ccec71a89061286d88cb6bde58c851d4ce73fe6529b6893589425cd85da

Network IOC's:

https://www.google.com/url?q=https://twitter.com/malware_traffic/status/1417905207682510849&sa=D&source=editors&ust=1633368290045000&usg=AOvVaw3D-IhmBm9iNJfXsKtHCaNj
https://www.google.com/url?q=https://isc.sans.edu/diary/rss/27738&sa=D&source=editors&ust=1633368290046000&usg=AOvVaw2R-iMUoPVPOlG1CIgPFz5K


20/20

 
IP and url for miner downloader:

122[.]10[.]82[.]109

https://122[.]10[.]82[.]109:8080/connect

Bazar backdoor downloaded from:

185[.]53[.]46[.]33

BazarBackdor C2:

167[.]172[.]37[.]20

Trickbot C2:

103[.]140[.]207[.]110, 103[.]56[.]207[.]230, 45[.]239[.]232[.]200

 


