
1/2

How to Write a Hancitor Extractor in Go
pid4.io/posts/how_to_write_a_hancitor_extractor/

3 minutes

Hancitor (AKA Chanitor) is a well known and old malware family. A number of great blogs
have been posted on the topic of analyzing the loader. Recently @herrcor live streamed
building an extractor with Python. It was a great session and worth checking out.

It seems that a Python extractor is relatively straightforward. So you might ask: Can we build
the same extractor with Go, using only the standard libary? Well, Yes, but with some
drawbacks.

Here’s the Gist if you want to skip the comments and check out the code.

Let’s see what can be done without importing any external code. Below we see that
Extract is the only exported function, and it returns a configuration struct .

// Config represents a parsed malware configuration
type Config struct {

Url []url.URL
CampaignID string
Family string
Raw json.RawMessage // any data that is not represented elsewhere in

the struct can be put here
}

// Extract extracts configuration a HANCITOR PE
func Extract(mal *pe.File) (config.Config, error) {

if mal.Section(".data") == nil {
 return config.Config{}, errors.New("invalid pointer to PE data

section")
}
dataSection, err := mal.Section(".data").Data()
if err != nil {
 return config.Config{}, err
}

The "debug/pe" library was certainly not intended for malware analysis, but it is sufficient
for this task. The task being to parse out of the data the configuration material.

The disadvantage to using only the standard library is that "debug/pe" does not offer the
ability to do dynamic offset calculations. In lieu of using dynamic offsets as shown by herrcor,
CAPEv2 can be used as a template.

https://pid4.io/posts/how_to_write_a_hancitor_extractor/
https://malpedia.caad.fkie.fraunhofer.de/details/win.hancitor
https://twitter.com/herrcore
https://twitter.com/herrcore/status/1445056161611493379
https://gist.github.com/JamesHovious/1d6adb1dd6623af88735eeb5eba08eba
https://github.com/kevoreilly/CAPEv2/blob/master/modules/processing/parsers/mwcp/Hancitor.py/

2/2

// key material at 16:24 in the data section
hash := sha1.Sum(dataSection[16:24])
rc4Key := hash[:5]

// 24 == starting after the key material
// 2000 == total size of config
conf, err := decryptConfig(rc4Key, dataSection[24:2000])
if err != nil {
 return config.Config{}, err
}

After the key material is parsed we can decrypt and parse the configuration values.

cipher, err := rc4.NewCipher(rc4Key)
if err != nil {
 return config.Config{}, err
}

// decrypt the config
cipher.XORKeyStream(ciphertext, ciphertext)

// start parsing into a Config struct
var conf config.Config
build := buildID(ciphertext)
r, err := json.Marshal(fmt.Sprintf(`{"rc4_key": "%v" }`, rc4Key))
if err != nil {
 return config.Config{}, err
}

So it is possible to write a full extractor in Go instead of Python. But there are some clear
drawbacks. On the other hand we didn’t take a trip through dependency hell to get to a
statically compiled CLI tool, which didn’t import a single third party library. So that was nice.

The full source code for the extractor can be found as Gist . Just call the exported function
like so: config, err := hancitor.Extract(mal) in which mal is a parsed DLL parsed
as a *pe.File .

malware analysis go programming

454 Words

2021-10-05

https://gist.github.com/JamesHovious/1d6adb1dd6623af88735eeb5eba08eba
https://pkg.go.dev/debug/pe#NewFile
https://pid4.io/tags/malware-analysis/
https://pid4.io/tags/go/
https://pid4.io/tags/programming/

