Using Windows Sandbox for Malware Analysis

blag.nullteilerfrei.de/2021/10/03/using-windows-sandbox-for-malware-analysis/

rattle

Disclaimer: If you are not running Windows on your host, you might not get anything out
of this post. Sorry Tux. | am convinced that the Windows Sandbox is one of the best
virtualization solutions to do dynamic malware analysis (for Windows malware, at least). The
reason is quite simple: Distinguishing a Windows 10 Sandbox instance from the actual
underlying Windows 10 install should be very difficult for malware. Specifically if the host is
running on HyperV with Guarded Host enabled, my current understanding is that there are
little to no differences between the two, but they are neatly isolated from one another. The
configuration options are limited, but you can easily cook up a config that launches a
WindowsSandbox instance that has all the tools you need for some basic unpacking &
dynamic analysis. This is what my malware analysis sandbox looks like at launch:

| have successfully executed a number of samples that evade execution in other virtualized
environments. That's a far cry from rigorous testing, so take my praise with a grain of salt.
Still, it might be worth a try, the setup is really easy. ### My Config The [Windows Sandbox
documentation][WSDOCS] should have everything you need for installation, that bit is fairly
straightforward. What the documentation doesn't have is a ready-to-go, copy & paste
example configuration. So here it is:

1/3

https://blag.nullteilerfrei.de/2021/10/03/using-windows-sandbox-for-malware-analysis/
https://blag.nullteilerfrei.de/wp-content/uploads/2021/10/new-windows-sandbox.png

<Configuration>
<AudioInput>Disable</AudioInput>
<ClipboardRedirection>Disable</ClipboardRedirection>
<MemoryInMB>4096</MemoryInMB>
<Networking>Disable</Networking>
<PrinterRedirection>Disable</PrinterRedirection>
<ProtectedClient>Enable</ProtectedClient>
<vGPU>Enable</vGPU>
<VideoInput>Disable</VideoInput>
<LogonCommand>
<Command>powershell.exe -ep unrestricted
c:\\tooling\\newsandbox.psl</Command>
</LogonCommand>
<MappedFolders>
<MappedFolder>
<HostFolder>w:\vmshare\tooling</HostFolder>
<SandboxFolder>c:\tooling</SandboxFolder>
<ReadOnly>true</ReadOnly>
</MappedFolder>
<MappedFolder>
<HostFolder>w:\vmshare\airlock</HostFolder>
<SandboxFolder>c:\airlock</SandboxFolder>
<ReadOnly>false</ReadOnly>
</MappedFolder>
</MappedFolders>
</Configuration>

You put this into a file called malware-analysis.wsb and that'sit. The .wsb file type
should be associated with the Windows Sandbox executable, so shell-executing the file
(read: double-clicking it) should launch a new Windows Sandbox instance with that
configuration. Most of the settings are fairly obvious. This configuration is my offline analysis
sandbox which has no internet connection. | give the VM a decent amount of memory to
avoid being detected based on poor hardware specs. All other settings are configured to lock
down the sandbox instance as tightly as possible. | use two shared folders: -
w:\vmshare\tooling contains [ProcessHacker][], [SysInternals][], and [x64dbg][] with
[OllyDumpEX][] and [ScyllaHide][] plugins installed. - w:\vmshare\airlock is the location
where the malware goes into the sandbox, and dumps come out. You can have the Windows
Sandbox execute a brief setup script during startup. My script is the following:

2/3

[CmdletBinding(PositionalBinding=%$false)]
Param(
[Parameter (Mandatory=$false)]
[string] $Src = "c:\tooling"
)

Set-ExecutionPolicy Unrestricted -Scope LocalMachine
$wsh = New-Object -comObject WScript.Shell

$shortcuts = @(
@("x32dbg", "$Src\x64dbg\release\x32\x32dbg.exe"),
@("x64dbg", "$Src\x64dbg\release\x64\x64dbg.exe"),
@("hacker", "$Src\ProcessHacker\64bit\ProcessHacker.exe")
)
$copyfile = @(
@("pmoOnitor.exe", "$Src\SysinternalsSuite\Procmon64.exe"),
@("autoruns.exe", "$Src\SysinternalsSuite\autoruns64.exe")

)

$copyfile | ForEach-Object {
$dst = Join-Path "$Home\Desktop" $_[0]
Copy-Item $_[1] $dst

}
$shortcuts | ForEach-Object {
$dst = $_[0]
$sc = $wsh.CreateShortcut("$Home\Desktop\$dst.1lnk")
$sc.TargetPath = $_[1]
$sc.Save()
}

All it does is make PowerShell execute at unrestricted by default and place a few shortcuts
on the desktop to my analysis tooling. You can obviously do more here. ### Caveats | am
only recommending the Windows Sandbox for very simple dynamic analysis, mainly for: -
unpacking packed binaries with [x64dbg][] and [ProcessHacker][] - verifying hypotheses
formed during static analysis - deobfuscating obfuscated PowerShell, JScript, and VBScript
dynamically It is not well-suited for more complex scenarios. There was a [very nice piece
about Windows Sandbox internals][CPBLOG] which illustrates how you can replace the
Windows Sandbox base image with your own. The article is very interesting but quite frankly,
| would rather set up a proper VM than hack a different base image into the Windows
Sandbox. The big advantage for me is that | get an extremely well-hardened virtualization
solution with close to zero effort. [WSDOCS]: https://docs.microsoft.com/en-
us/windows/security/threat-protection/windows-sandbox/windows-sandbox-overview
[CPBLOG]: https://research.checkpoint.com/2021/playing-in-the-windows-sandbox/
[ProcessHacker]: https://processhacker.sourceforge.io/downloads.php [SysInternals]:
https://docs.microsoft.com/en-us/sysinternals/ [x64dbg]: https://x64dbg.com/ [OllyDumpEXx]:
https://low-priority.appspot.com/ollydumpex/ [ScyllaHide]:
https://github.com/x64dbg/ScyllaHide

Tags: dynamic analysis - hardening - malware - sandbox - unpacking - virtual machine -
virtualization - windows sandbox

3/3

https://blag.nullteilerfrei.de/tag/dynamic-analysis/
https://blag.nullteilerfrei.de/tag/hardening/
https://blag.nullteilerfrei.de/tag/malware/
https://blag.nullteilerfrei.de/tag/sandbox/
https://blag.nullteilerfrei.de/tag/unpacking/
https://blag.nullteilerfrei.de/tag/virtual-machine/
https://blag.nullteilerfrei.de/tag/virtualization/
https://blag.nullteilerfrei.de/tag/windows-sandbox/

