
1/16

Objective-See's Blog
objective-see.com/blog/blog_0x68.html

Made In America: Green Lambert for OS X

by: Runa Sandvik / October 1, 2021

This guest blog post, was written by Runa Sandvik, a noted security researcher who works
on digital security for journalists and other high-risk people.

Mahalo for sharing Runa! 🤩
📝 👾 Want to play along?
I’ve uploaded an OSX.GreenLambert sample (password: infect3d).

...please don’t infect yourself!

Background

In March 2017, WikiLeaks began publishing thousands of files detailing the CIA’s spying
operations and hacking tools. The leak, known as Vault 7, was the largest disclosure of
classified information in the agency’s history. In April, Symantec publicly linked Vault 7 to an
advanced threat actor named Longhorn. Kaspersky then announced it tracks the same actor
as The Lamberts, and revealed the existence of an OS X implant called Green Lambert.

Kaspersky’s research showed that The Lamberts’ toolkit includes “network-driven backdoors,
several generations of modular backdoors, harvesting tools, and wipers.” A timeline of
actvitiy for tools used by The Lamberts shows that “Green Lambert is the oldest and longest-
running in the family.” Green Lambert is described as an “active implant” and “the only one
where non-Windows variants have been found.”

This blog post, along with the [Made in America]
(https://objectivebythesea.com/v4/talks.html#Made In America) talk at Objective By The Sea
v.4.0, provides a comprehensive analysis of Green Lambert for OS X. I’ll share how I
approached the research, the tools I used, the things I figured out, and the things I didn’t. I’ll
also look at whether the developers followed the agency’s guidelines for development
tradecraft. Some might ask why I’d look at an implant this old? Doing so helps us better
understand the capabilities of its sophisticated creator, past and present. And, if we’re being
honest: I could, so I did.

https://objective-see.com/blog/blog_0x68.html
https://twitter.com/runasand
https://objective-see.com/downloads/malware/GreenLambert.zip
https://wikileaks.org/ciav7p1/cms/index.html
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=7ca2e331-2209-46a8-9e60-4cb83f9602de&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://securelist.com/unraveling-the-lamberts-toolkit/77990/
https://securelist.com/unraveling-the-lamberts-toolkit/77990/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07180034/Lamberts.png
https://objectivebythesea.com/v4/talks.html#Made
https://objectivebythesea.com/v4/index.html
https://twitter.com/runasand/status/1424759611157057544

2/16

Victimology

We don’t know how this implant makes it into a target system; the type of system it’s used
on; or the geographical location of a typical target. Symantec said that the actor has
infiltrated governments, “in addition to targets in the financial, telecoms, energy, aerospace,
information technology, education, and natural resources sectors.” QI-ANXIN said the actor
has previously “targeted personnel and institutions in China.”

A version of Green Lambert for OS X was first uploaded to VirusTotal, from Russia, in
September 2014. Kaspersky marked it as malicious in October 2016. AegisLab, a security
firm based in Taiwan, followed a couple of weeks later. VirusTotal identified that the implant
calls itself GrowlHelper, possibly referencing the popular Growl notification system for OS X
from 2004.

Triage

Using static analysis methods, we can triage the implant without running it. For example, we
can determine that GrowlHelper is a small, unsigned Mach-O executable.

$ file GrowlHelper
GrowlHelper: Mach-O executable i386

$ codesign -dvv GrowlHelper
GrowlHelper: code object is not signed at all

$ du -h GrowlHelper
208K

We can use otool -L to print a list of linked libraries. This can sometimes provide insight
into the capabilities of the malware, but doesn’t appear to be particularly helpful here. Note
the few dependencies in the list below.

$ otool -L GrowlHelper
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
/System/Library/Frameworks/CoreServices.framework/Versions/A/CoreServices
/System/Library/Frameworks/Security.framework/Versions/A/Security
/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/SystemConfiguratio

/usr/lib/libSystem.B.dylib
/usr/lib/libgcc_s.1.dylib

What’s more interesting is the output of strings - . This tool can also provide insight into
the capabilities of the malware.

https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=7ca2e331-2209-46a8-9e60-4cb83f9602de&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://ti.qianxin.com/blog/articles/network-weapons-of-cia/
https://www.virustotal.com/gui/file/af7c395426649c57e44eac0bb6c6a109ac649763065ff5b2b23db71839bac655/detection
https://www.virustotal.com/gui/file/af7c395426649c57e44eac0bb6c6a109ac649763065ff5b2b23db71839bac655/detection/f-af7c395426649c57e44eac0bb6c6a109ac649763065ff5b2b23db71839bac655-1477597496
https://www.virustotal.com/gui/file/af7c395426649c57e44eac0bb6c6a109ac649763065ff5b2b23db71839bac655/detection/f-af7c395426649c57e44eac0bb6c6a109ac649763065ff5b2b23db71839bac655-1478101948
https://growl.github.io/growl/

3/16

$ strings - GrowlHelper
LoginItem
LaunchAgent
/Library/LaunchDaemons

www.google.com
Error from libevent when adding event for DNS server
1.3a

_SecKeychainFindInternetPassword
_SecKeychainItemCopyAttributesAndData
_kSCPropNetProxiesHTTPProxy
_kSCPropNetProxiesProxyAutoConfigEnable
_kSCPropNetProxiesProxyAutoConfigURLString

The references to LoginItem , LaunchAgent and LaunchDaemons suggest this implant
has different options for gaining persistence on a system. In other words: how the implant
ensures it’s executed again if the system is rebooted. Check out this post by Phil Stokes at
SentinelOne for an overview of malware persistence techniques seen in the wild.

The following three lines appear to be related to libevent, the same event notification library
that is used by Tor. The open-source library is very popular now, but was perhaps less
known back when this implant was created. The reference to 1.3a may shed some light on
the development timeline for this implant: version 1.3a of libevent was released in February
2007.

The references to Keychain , Proxies and AutoConfig suggest this implant determines
proxy settings on the target system. According to this post,
kSCPropNetProxiesProxyAutoConfigEnable and
kSCPropNetProxiesProxyAutoConfigURLString were added in Xcode version 2.2. This

version was released in November 2005. Could be another clue about the development
timeline.

OS X Version

The static analysis methods we used were helpful, but we’re going to want to see how the
implant behaves on a system. For that, we’ll turn to dynamic analysis in a virtual machine.
But which version of OS X does the implant need? We know that it’s a 32-bit executable, and
the latest macOS is 64-bit only. We can narrow this down further by looking at symbols using
nm .

https://www.sentinelone.com/blog/how-malware-persists-on-macos/
https://twitter.com/philofishal
https://libevent.org/
https://www.torproject.org/
https://libevent.org/old-releases.html
https://blog.adium.im/2006/01/having-trouble-building/
https://www.macworld.com/article/177734/xcode-6.html

4/16

$ nm GrowlHelper
 U _CFArrayAppendValue
 U _CFArrayCreateMutable
 U _CFArrayCreateMutableCopy
 U _CFArrayGetCount
 U _CFArrayGetValueAtIndex
 U _CFArrayRemoveValueAtIndex
 U _CFDictionaryCreate
 U _CFDictionaryGetValue
 U _CFGetTypeID
 U _CFNumberGetTypeID
 ...

The next step is a bit tedious, but does provide helpful information. To better understand
what these symbols represent, we can look them up in Apple’s Developer Documentation.
Not only will we be able to learn how and where a given symbol is used, but we can also see
when it was deprecated. With that information, we can determine which version of OS X the
implant will run on.

FSGetCatalogInfo is available in macOS 10.0 - 10.8
FSPathMakeRef is available in macOS 10.0 - 10.8
FSSetCatalogInfo is available in macOS 10.0 - 10.8
SecKeychainSearchCopyNext is available in macOS 10.0 - 10.7
SecKeychainSearchCreateFromAttributes is available in macOS 10.0 - 10.7
SecKeychainSetUserInteractionAllowed is available in macOS 10.2 - 12.0

This means that the implant will run on (at least) 10.7: OS X Lion.

Note: I confirmed the implant runs on 10.8. It probably runs on any OS X that supports 32-bit
executables.

Development / Use Timeline

Let’s look at a potential timeline for the development and use of this implant.

Growl was released in 2004 and retired in 2020. Xcode version 2.2 was released in
November 2005, while libevent 1.3a was released in February 2007. OS X 10.7 was
released in 2011, and 10.8 in 2012. The implant first appeared on VirusTotal in late 2014.

https://developer.apple.com/
https://developer.apple.com/documentation/coreservices/1565356-fsgetcataloginfo/
https://developer.apple.com/documentation/coreservices/1565195-fspathmakeref/
https://developer.apple.com/documentation/coreservices/1566580-fssetcataloginfo/
https://developer.apple.com/documentation/security/1515362-seckeychainsearchcopynext/
https://developer.apple.com/documentation/security/1515366-seckeychainsearchcreatefromattri/
https://developer.apple.com/documentation/security/1396453-seckeychainsetuserinteractionall

5/16

Court records show Vault 7 was stolen sometime in early 2016 and published by WikiLeaks a
year later. Based on these datapoints, it’s likely the implant was created and used between
2007 and (at least) 2013.

Setting Up a Virtual Machine

As of June 2021, OS X 10.7 is available for free from Apple. You can also do what I did: buy
an old MacBook on eBay for $95.

You may have to unpack the .dmg you get from Apple to get a file that’ll work with your
virtual machine software. If so, try:

$ hdiutil attach InstallMacOSX.dmg

Click on Install Mac OS X on the Desktop and use The Unarchiver (or another tool) to extract
InstallMacOSX.pkg to a temporary folder. Go into this folder, click on the new copy of
InstallMacOSX.pkg and select Show Package Contents. Copy InstallESD.dmg to

where you keep your virtual machine images, and use that instead.

We’re going to use lldb, the default debugger, to execute the implant, modify registers, and
examine memory contents. OS X 10.7 doesn’t include Xcode by default, but a quick Google
search suggests we need version 4.6.3 and can get it from Apple’s Developer Downloads
page. After installing Xcode and confirming that lldb is working, we isolate the machine
and create a clean snapshot.

Persistence

Phil Stokes at SentinelOne wrote that “the most common way malware persists on macOS is
via a LaunchAgent. Each user on a Mac can have a LaunchAgents folder in their own
Library folder to specify code that should be run every time that user logs in.” We can confirm
this is the case with Green Lambert by running the implant, then checking the user’s
LaunchAgents folder.

$ ls ~/Library/LaunchAgents
com.apple.GrowlHelper.plist

Once installed, it’ll delete the original GrowlHelper file from the system. This is where our
VM snapshot comes in handy.

From Phil’s post, we know that “LaunchAgents take the form of property list files, which can
either specify a file to execute or can contain their own commands to execute directly.” We
can confirm this by looking at com.apple.GrowlHelper.plist .

https://www.justice.gov/usao-sdny/pr/joshua-adam-schulte-charged-unauthorized-disclosure-classified-information-and-other
https://support.apple.com/kb/DL2077?locale=en_US
https://theunarchiver.com/
https://lldb.llvm.org/
https://developer.apple.com/download/
https://www.sentinelone.com/blog/how-malware-persists-on-macos/

6/16

$ cat ~/Library/LaunchAgents/com.apple.GrowlHelper.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>Label</key>
<string>com.apple.GrowlHelper</string>
<key>ProgramArguments</key>
<array>

<string>/Users/user/Library/Caches/com.apple.Growl.GrowlHelper/5d0d/GrowlHelper</strin

 <string>-f</string>
</array>
<key>RunAtLoad</key>
<true/>
<key>OnDemand</key>
<false/>

</dict>
</plist>

The ProgramArguments tell us where GrowlHelper is installed and that it takes at least
one command line argument (-f). The RunAtLoad key confirms the implant will run every
time the user logs in. To get an overview of the installation process, we can monitor file
system activity for GrowlHelper events.

$ sudo fs_usage -w -f filesys > filesys.out
$ sudo grep GrowlHelper filesys.out
execve /Users/user/GrowlHelper 0.015273 W bash.2848
execve /Users/user/GrowlHelper 0.000383 GrowlHelper.2851

open /Users/user/.profile 0.000018 GrowlHelper.2851
open /Users/user/.bash_profile 0.000015 GrowlHelper.2851
open /Users/user/.bash_login 0.000015 GrowlHelper.2851
open /Users/user/.bashrc 0.000014 GrowlHelper.2851
open /Users/user/.cshrc 0.000014 GrowlHelper.2851
open /Users/user/.login 0.000014 GrowlHelper.2851
open /Users/user/.tcshrc 0.000014 GrowlHelper.2851
open /Users/user/.xsession 0.000007 GrowlHelper.2851
open /Users/user/.xinitrc 0.000006 GrowlHelper.2851

We see that GrowlHelper has a handful of options for maintaining persistence, in case the
LaunchAgent is removed. In one case, the implant uses a .profile file to ensure it’s
launched whenever the user opens the Terminal. (Path to GrowlHelper was lightly edited
due to space constraints.)

$ cat ~/.profile
GrowlHelper=`/path/to/com.apple.Growl.GrowlHelper/5d0d/GrowlHelper 2>&1` # Automatic
GrowlHelper. Do not remove

Self-Update

7/16

We can compare how GrowlHelper behaves when the system is offline v. online. Here are
the files it created in an isolated VM.

$ file /Users/offline/Library/Caches/com.apple.Growl.GrowlHelper/5d0d/*
GrowlHelper: Mach-O executable i386
db: Berkeley DB 1.85 (Hash, version 2,
native byte-order)
fifo: socket
queue: directory

And here are the files GrowlHelper created on that old MacBook I got from eBay.

$ file /Users/online/Library/Caches/com.apple.Growl.GrowlHelper/5d0d/*
GrowlHelper: Mach-O executable i386
Software Update Check: Mach-O executable i386
db:
Berkeley DB 1.85 (Hash, version 2, native byte-order)
fifo:
socket
queue: directory

It looks like GrowlHelper creates an executable named Software Update Check when
it thinks it’s online. I was pretty excited when I first found this, but quickly realized it just drops
a copy of itself with a different name.

3fcdbd3c5fa34fb8e8d58038fa1d1f13d37e8a4b GrowlHelper
3fcdbd3c5fa34fb8e8d58038fa1d1f13d37e8a4b Software Update Check

It’s possible that Software Update Check is used to update GrowlHelper .

Command Line Arguments

We know where GrowlHelper is installed and that it takes at least one command line
argument (-f). With this information, we can identify other arguments by manually looping
through options a - z and A - Z on the command line. The output below is the result of doing
this try/fail experiment in a VM.

Args Meaning Action

c ?? Prints: ** Commands will be processed immediately **

d ?? If GrowlHelper is installed, drops Software Update Check

f Default Persists as LaunchAgent, creates: GrowlHelper, db, fifo, queue

p: ?? Prints: GrowlHelper: option requires an argument – p

s ?? Runs without persisting, creates: db, fifo, queue

L ?? Runs without persisting, does not create files

8/16

Args Meaning Action

N ?? Persists as LaunchAgent, creates: GrowlHelper, Software Update
Check, db

Hopper Disassembler is a tool that helps you disassemble, decompile and debug malware.
There’s a free version, and you can get a personal license for $99. Using Hopper, we can
confirm the arguments we found by looking for argc , argv , and getopt .

By using Hopper’s pseudo-code mode, we can see the full set of possible command line
arguments.

Entry Points

When you open GrowlHelper in Hopper, you’ll see that it has multiple entry points:
EntryPoint_1 through EntryPoint_21 . These entry points are called when
GrowlHelper starts executing, before the main entry point at 0x2cd8. GrowlHelper will

use these entry points to initialize certain functionality. QI-ANXIN detailed these entry points
in this post / this screenshot below.

https://www.hopperapp.com/
https://ti.qianxin.com/blog/articles/network-weapons-of-cia/

9/16

It appears GrowlHelper has a preflight checklist of sorts: it initializes functionality, figures
out what it needs, deletes the rest.

$ sudo grep GrowlHelper filesys.out
mkdir /Users/user/.DS_Info
0.000083 GrowlHelper.2851
mkdir /Users/user/.DS_Info/5d0d
0.000044 GrowlHelper.2851
mkdir /Users/User/Library/Caches/com.apple.advanced
0.000066 GrowlHelper.2851

rmdir /Users/user/.DS_Info/5d0d
0.000109 W GrowlHelper.2851
rmdir /Users/user/.DS_Info
0.000240 W GrowlHelper.2851
rmdir /Users/User/Library/Caches/com.apple.advanced
0.000068 GrowlHelper.2851

Decrypting a String

Given the author, it’s no surprise that most strings in this implant are encrypted. The implant
appears to handle encrypted strings in a bunch of different ways, which makes it challenging
to automate decryption. Hopper has done some of the analysis work for us, allowing us to at
least manually decrypt strings with lldb . Here’s one example.

10/16

In the screenshot above, we have:

The address for the program counter / call to the decryption routine (0x1549b)
The values for ecx (0x01), edx (0x31e80), eax (0x2d487)
The address after the decryption routine, which we’ll use as a breakpoint for lldb
(0x154a0)

We load the implant into the debugger using lldb GrowlHelper , and decrypt the string:

Decrypting More Strings

11/16

Manually decrypting strings turned into a rabbit hole for me, but that’s OK. I’m sure there are
ways to do this faster, but I have to admit I really enjoyed the process of learning to do this
manually. Here are the strings I’ve decrypted so far, minus duplicates.

pc String

0xe8a0 /tmp

0xe9ba upload_dir

0xe9e2 upload_key

0xea23 upload_header

0xed50 52

0x185ef download

0x187d7 ?

0x18eae InternetOpen

0x19121 ** Commands will be processed immediately **

0x191f6 login.php

0x19216 getconf.php

0x19236 s|%s|%s|%s upload.gethostname

0x195be show.php

0xa2f6 ConfigInitdFile

0x2ce6f /etc/init.d

0xa762 /etc/rc.d.File

0xaccc .xinitrc

0xae0b ConfigPersistXsessionFile

0xae23 ConfigPersistXSession

0xaec9 .xsession

0xaf39 ConfigPersistXinitRCFile

0xaf51 ConfigPersistXInitRC

0xc8f0 proxy_type

12/16

pc String

0xc916 proxy_url

0xc948 Could not set proxy

0xca62 http://www.google.com

0xce05 no proxy_url

0x11309 index.html

0x11816 hps.txt

0x11d35 NODELETE

0x11d64 DELETE

0x11d93 SECDELETE

0x1218d NOWAIT

0x121c0 WAIT

0x121f1 WAIT_FOREVER

0x1225a /bin/sh -c

0x132b1 Version

0x13c1e Service

0x147f8 Proxy

0x14b1e ProxyUser

0x1549b hversion.txt

0x15c12 HHLogEntry

0x15c5b HHLogHead

0x15e2d HHLogTail

0x1a427 hh_last_attempt

0x1a530 localhost_sock_create(pipe)

0x1a8ab hh_last_attempt

0x649e No LP configured

0x6a66 16

http://www.google.com/

13/16

Listening Post

One of the decrypted strings is No LP configured . LP likely stands for Listening Post, a
military term used in the context of signals intelligence and reconnaissance. Where other
types of malware would likely use the terms C2 or Command & Control, the CIA and the
NSA use LP. One Vault 7 document is titled Listening Post (LP) Creation, and another details
requirements for a Listening Post.

Configuration Files

Some of the decrypted strings refer to .html , .php , and .txt files, but I’m unable to
access them. But we know that Kaspersky found “a hostname and an IP address” hardcoded
in the implant. And researchers at QI-ANXIN determined the implant talks to the Listening
Post through login.php and getconf.php , and downloads follow-up code through
getfile.php .

Configuration? Survey?

If you dig around in Hopper and use pseudo-code mode from time to time, you’ll likely find
some interesting bits of information. When I stumbled upon the string Version=1.2.0 , I
decided to see where else = was referenced. To do that, highlight 0x132b8 as shown below
and hit x .

The list of references looks like this, with the current one selected.

https://wikileaks.org/ciav7p1/cms/page_17760568.html
https://wikileaks.org/ciav7p1/cms/page_3375129.html

14/16

We can then go through all these references, decrypt the strings, and get an output that
looks like this.

uname=
Time=%Y\%m\%d %H:%M:%S Z
Uptime=
Version=1.2.0
PID=

The output lists information from the target system (e.g. uname) and information from the
implant (e.g. Version). This could be a combination of a configuration file and system
survey.

Network Traffic

We can monitor the network traffic on our OS X 10.7 system using tcpdump and then view
the output in Wireshark.

This gives us the hardcoded hostname notify[.]growlupdate[.]com . Very clever given
the name of the executable.

And the hardcoded IP address: 94[.]242[.]252[.]68 .

15/16

Hostname

Google and the Wayback Machine don’t have any results for the domain name. If we look it
up on VirusTotal, we see that it was first submitted in October 2016. But if we look up the
domain on crt.sh, we see that an SSL certificate was created on October 29, 2013. The
domain may have been purchased earlier, but this at least suggests the domain was active in
late 2013. This matches the timeline we created earlier, as well as Kaspersky’s timeline of
activity by The Lamberts.

Note: Kaspersky sinkholed the domain to 95[.]211[.]172[.]143 between October 1,
2016 and October 2, 2017.

Development Tradecraft DOs and DON’Ts

As part of Vault 7, WikiLeaks published 52 revisions of the CIA’s development tradecraft
guidelines. I mapped the revisions in a public spreadsheet to see how the guidance changed
over time. Studying the development choices made by sophisticated actors may help us
track them over time. For example, when Kaspersky identified a code overlap between
Sunburst and Kazuar, it was because of “unusual, shared features” such as the UID
generation algorithm, the sleeping algorithm, and use of the FNV-1a hash.

https://www.google.com/search?q=notify.growlupdate.com
https://waybackmachine.com/
https://www.virustotal.com/gui/domain/notify.growlupdate.com/relations
https://crt.sh/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07180034/Lamberts.png
https://wikileaks.org/ciav7p1/cms/page_14587109.html
https://docs.google.com/spreadsheets/d/1cw9wAWxlenq8Mg6wXh4vD6eNmwJCq-QNo8XeXXX0he4/edit#gid=0
https://securelist.com/sunburst-backdoor-kazuar/99981/

16/16

As Costin Raiu of Kaspersky pointed out on Twitter, “C2 jitter, secure erase / uninstall,
SSL/TLS+extra crypto, size below 150K, encrypt logs and local collection, decrypt strings on
the fly in mem… simply following these guidelines immediately makes the malware (“tools”)
more interesting and, recognizable by a skilled analyst.” While most of these are true here as
well, there are a few things that stand out.

File size is a bit over the “ideal binary file size” for a fully featured tool (208K v. 150K)

The references to Listening Post / LP may be CIA and USG specific terminology

Use of English abbreviations for days of the week (mtwhfsu / MTWHFSU)

Use of the libevent library back when it was perhaps less well-known

Conclusion

I’ve really enjoyed working on this project and certainly learned a lot along the way. I’m
confident there’s more to find here, and I’d love to collaborate with anyone interested in
taking a closer look. As for The Lamberts? Malware from this actor keeps turning up, along
with new insights. In fact, Kaspersky’s APT trends report for Q1 2021 mentions Purple
Lambert, a malware “capable of providing an attacker with basic information about the
infected system and executing a received payload.”

Indicators of Compromise

notify[.]growlupdate[.]com
94[.]242[.]252[.]68
3fcdbd3c5fa34fb8e8d58038fa1d1f13d37e8a4b

References

Patrick’s free and open-source book on Mac malware analysis was incredibly helpful during
this project. If you haven’t already done so, I highly recommend checking out The Art of Mac
Malware.

This website uses cookies to improve your experience.

https://twitter.com/craiu/status/1424976647300780032
https://securelist.com/apt-trends-report-q1-2021/101967/
https://taomm.org/

