
1/23

GhostEmperor: From ProxyLogon to kernel mode
securelist.com/ghostemperor-from-proxylogon-to-kernel-mode/104407/

Authors

 Mark Lechtik

 Aseel Kayal

 Paul Rascagneres

 Vasily Berdnikov

 Download GhostEmperor’s technical details (PDF)

https://securelist.com/ghostemperor-from-proxylogon-to-kernel-mode/104407/
https://securelist.com/author/marklechtik/
https://securelist.com/author/aseelkayal/
https://securelist.com/author/paulrascagneres/
https://securelist.com/author/vasilyberdnikov/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/30094337/GhostEmperor_technical-details_PDF_eng.pdf

2/23

While investigating a recent rise of attacks against Exchange servers, we noticed a recurring
cluster of activity that appeared in several distinct compromised networks. This cluster stood
out for its usage of a formerly unknown Windows kernel mode rootkit that we dubbed
Demodex, and a sophisticated multi-stage malware framework aimed at providing remote
control over the attacked servers.

The former is used to hide the user mode malware’s artefacts from investigators and security
solutions, while demonstrating an interesting undocumented loading scheme involving the
kernel mode component of an open-source project named Cheat Engine to bypass the
Windows Driver Signature Enforcement mechanism.

In an attempt to trace the duration of the observed attacks, we were able to see the toolset in
question being used from as early as July 2020. Furthermore, we could see that the actor
was mostly focused on South East Asian targets, with outliers in Egypt, Afghanistan and
Ethiopia which included several governmental entities and telecommunication companies.

With a long-standing operation, high profile victims, advanced toolset and no affinity to a
known threat actor, we decided to dub the underlying cluster GhostEmperor. Our
investigation into this activity leads us to believe that the underlying actor is highly skilled and
accomplished in their craft, both of which are evident through the use of a broad set of
unusual and sophisticated anti-forensic and anti-analysis techniques.

How were the victims initially infected?

We identified multiple attack vectors that triggered an infection chain leading to the execution
of malware in memory. We noticed that the majority of the GhostEmperor infections were
deployed on public facing servers, as many of the malicious artefacts were installed by the
‘httpd.exe’ Apache server process, the ‘w3wp.exe’ IIS Windows server process, or the
‘oc4j.jar’ Oracle server process. This means that the attackers likely abused vulnerabilities in
the web applications running on those systems, allowing them to drop and execute their files.

It is worth mentioning that one of the GhostEmperor infections affected an Exchange server,
and took place on March 4, 2021. This was only two days after the patch for the ProxyLogon
vulnerability was released by Microsoft, and it is possible that the attackers exploited this
vulnerability in order to allow them to achieve remote code execution on vulnerable
Exchange servers.

Although GhostEmperor’s infections often start with a BAT file, in some cases the known
infection chain was preceded by an earlier stage: a malicious DLL that was side-loaded by
wdichost.exe, a legitimate command line utility by Microsoft originally called MpCmdRun.exe.
The side-loaded DLL then proceeds to decode and load an additional executable called
license.rtf. Unfortunately, we did not manage to retrieve this executable, but we saw that the
consecutive actions of loading it included the creation and execution of GhostEmperor
scripts by wdichost.exe.

https://www.cheatengine.org/

3/23

Example of a GhostEmperor infection chain started by a side-loaded DLL

Lastly, some of the Demodex deployments were performed remotely from another system in
the network using legitimate tools such as WMI or PsExec, suggesting that the attackers
have infected parts of the victims’ networks beforehand.

Infection chain overview

The infection can be divided into several stages that operate in succession to activate an in-
memory implant and allow it to deploy additional payloads during run time. This section
provides a brief overview of these stages, including a description of the final payloads. The
internals of these payloads can be found in a technical document that accompanies this
publication.

The flow of infection starts with a PowerShell dropper. The purpose of this component is to
stage the subsequent element in the chain by installing it as a service. Before doing so, it
creates a couple of registry keys that it assigns encrypted data to, one of which corresponds
to a payload that will be deployed in the later stages. It’s worth noting that the script itself is
delivered in a packed form, whereby its complete execution is dependent on a command-line
argument that is used as a key to decrypt the bulk of its logic and data. Without this key, it’s
impossible to recover the flow that comes after this stage.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29145644/Ghost_Emperor_01.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/30094337/GhostEmperor_technical-details_PDF_eng.pdf

4/23

Initial stage comprised of encrypted PowerShell code that is decrypted based on an attacker-
provided AES key during run time

The next stage, which is executed as a service by the former, is intended to serve as yet
another precursor for the next phases. It is used to read the encrypted data from the
previously written registry keys and decrypt it to initiate the execution of an in-memory
implant. We identified two variants of this component, one developed in C++ and another in
.NET. The latter, which appeared in the wild as early as March 2021, uses the GUID of the
infected machine to derive the decryption key, and is thus tailored to be executed on that
specific system. The C++ variant, on the other hand, relies on hardcoded AES 256
encryption keys.

The third stage is the core implant that operates in memory after being deployed by the
aforementioned loader, and is injected into the address space of a newly created
svchost.exe process. Its main goal is to facilitate a communication channel with a C2 server,
whereby malicious traffic is masqueraded under the guise of communication with a benign
service, based on a Malleable C2 profile embedded within its configuration. It is important to
note that the implementation of the Malleable C2 feature, which is originally provided in the
Cobalt Strike framework, is customized and most likely rewritten based on reverse
engineering of Cobalt Strike’s code.

Another interesting technique used to conceal the malicious traffic is the malware’s usage of
fake file format headers to encapsulate the data passed to the C&C server. To do so, the in-
memory implant synthesizes a fake media file of one of the formats RIFF, JPEG or PNG and

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29145742/Ghost_Emperor_02.png

5/23

puts any data conveyed to the server in encrypted form as its body. Thus, the transmitted
packet appears as either an image or audio file and blends with other legitimate traffic in the
network.

Malleable C2 profile and fake header

The last stage is the payload injected to the winlogon.exe process by the aforementioned
implant and used to provide remote control capabilities to the attackers. Such capabilities
include initiation of a remote console or desktop session, with the latter supporting execution
of sent mouse clicks and keystrokes on the target machine and retrieval of periodic
screenshots that reflect the output of those actions. This stage can also allow the attackers
to load arbitrary .NET assemblies or execute PowerShell commands, as well as fully control
the victim’s filesystem in order to search, retrieve or push files to it.

In addition to the last stage payload, the core component is also capable of deploying a
Windows kernel mode driver on the system. The purpose of this driver is to serve as a rootkit
that conceals malware artefacts such as files, registry keys and network traffic, thus gaining
stealth and ability to avoid detection by security products and forensic investigators. The
upcoming sections elaborate on how this driver is deployed (namely how it bypasses
Windows mitigations, given that it’s not digitally signed) and what particular features it
provides to the user mode malicious implant.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29145843/Ghost_Emperor_03.png

6/23

Overview of the GhostEmperor infection chain

Rootkit loading analysis

On modern 64-bit Windows operating systems, it is generally not possible to load an
unsigned driver in a documented way due to the Driver Signature Enforcement mechanism
introduced by Microsoft. For this reason, attackers have abused vulnerabilities in signed
drivers to allow execution of unsigned code to kernel space. A typical approach taken by
many actors to date, and mostly in older versions of Windows, is to disable the Code
Integrity mechanism by switching the nt!g_CiEnabled flag that resides within the CI.DLL
kernel module after getting write and execution primitives via vulnerable signed drivers. After
shutting down the Code Integrity mechanism, an unsigned driver can be loaded.

This approach was limited by Microsoft with the introduction of Kernel Patch Protection (a.k.a
PatchGuard). This mechanism protects modification of specific data structures in the
Windows kernel memory space, including the nt!g_CiEnabled flag. For this reason, the
modification of this flag can now cause an invocation of a BSOD. This can be tackled by
quickly setting the flag value, loading an unsigned driver and switching it back to the previous
state before PatchGuard identifies a change, though this still introduces a race condition that
can crash the system.

The approach used by the developer of this rootkit allows loading an unsigned driver without
modifying the Code Integrity image and dealing with a potential crash. It abuses features of a
legitimate and open-source signed driver named dbk64.sys which is shipped along with

1

2

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29150042/Ghost_Emperor_04.png

7/23

Cheat Engine, an application created to bypass video game protections and introduce cheats
into them. This driver provides capability to write and execute code in kernel space by
design, thus allowing it to run arbitrary code in kernel mode.

After dropping the dbk64.sys driver with a randomly generated filename to disk and loading
it, the malware issues documented IOCTLs to the driver that allow shellcode to be run in
kernel space through the following sequence of actions:

First, a memory buffer is allocated in the kernel space non-paged pool by issuing
IOCTL_CE_ALLOCATEMEM_NONPAGED.
A successfully allocated memory buffer will be then shared between the user mode
malware process and kernel address spaces using a direct I/O approach, whereby the
kernel mode buffer’s address is mapped to a different address in user space. This is
achieved by locking the buffer’s pages in physical memory so that they cannot be
paged out (which is possible since they are allocated in the non-paged pool) following
which an MDL for the buffer is created and a call to the
MmMapLockedPagesSpecifyCache API function is made. All of this is implemented in
the handler of IOCTL_CE_MAP_MEMORY.
At this point the malware can access the buffer in user mode through the provided
pointer from the previous IOCTL and write to it. The written data will in turn be reflected
in the same buffer in kernel space. This is used to write the shellcode into the buffer.
After the writing is done, the buffer is unmapped from user space by issuing
IOCTL_CE_UNMAP_MEMORY.
The written shellcode now resides only in kernel space and can be run by issuing
IOCTL_CE_EXECUTE_CODE.

The purpose of the shellcode is to replace the dbk64.sys IOCTL dispatcher with an
alternative one that in turn allows the loading of an unsigned driver. The alternative
dispatcher is also implemented as position-independent code and is bundled with the
shellcode. To replace the original dispatcher, the shellcode maps the code of the new
dispatcher in memory and patches the pointer to the IRP_MJ_DEVICE_CONTROL routine in
the dbk64.sys driver object. At this point, the IRP_MJ_DEVICE_CONTROL pointer is set to
the new dispatcher’s address and any IOCTL issued to the driver will pass through it.

IRP_MJ_DEVICE_CONROL hooking

3

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29150133/Ghost_Emperor_05.png

8/23

The alternative dispatcher provides the same core capabilities as the original one, with the
addition of a few that allow it to load a new driver to kernel space. The functionality that
makes it possible to achieve this goal is exposed through a set of IOCTL handlers that are
called in succession, finally leading to the load of the malware’s kernel mode rootkit. Below is
a table of these IOCTLs with descriptions, arranged in the order they are invoked by the
malware’s user mode logic in charge of deploying the rootkit.

IOCTL
Code

Description

0x220180 Processes a buffer provided by the user mode malware component by
verifying its size is 272 bytes and then decodes it by negating its bytes. This
IOCTL is in fact not invoked by the user mode code.

0x220184 Allocates a buffer in kernel space, locks its pages, creates an MDL and maps
the buffer to a user mode address using the
MmMapLockedPagesSpecifyCache API. This is essentially equivalent to the
chaining of functionalities in IOCTL_CE_ALLOCATEMEM_NONPAGED and
IOCTL_CE_MAP_MEMORY from the original dispatcher.
After this call, the user mode code has access to a kernel mode buffer and
can write to it using a pointer in user mode, as was the case for writing the
shellcode. This time, however, the malware manually loads the rootkit’s PE
image into the allocated buffer.

0x2201B4 Since the malware’s user mode code is in charge of loading the rootkit’s
image manually in IOCTL 0x220184, it has to resolve some function
addresses in kernel space that appear as dependencies in the image’s Import
Address Table. This IOCTL allows the function names to be received from
user space as strings, retrieving their address with the
MmGetSystemRoutineAddress API and providing it back to the user mode
code. The latter places the resolved address in the corresponding IAT entry of
the loaded image.

0x220188 Unmaps the address of the kernel mode buffer from user space so it’s only
accessible through its kernel mode pointer.

0x2201B8 Creates a new driver object using the IoCreateDriver function, assigning the
driver initialization function pointer to a position-independent stub that is
delivered with the shellcode and, once invoked, calls the loaded rootkit’s
DriverEntry function.

It is worth mentioning that the malware’s service makes use of a Cheat Engine utility called
kernelmoduleuloader.exe (MD5: 96F5312281777E9CC912D5B2D09E6132) during the
loading of the dbk64.sys driver. The driver is dropped along with the utility and a .sig file, with
the latter being used as a means of authenticating the component calling dbk64.sys by
conveying a digital signature that is associated with its binary.

9/23

As the malware is not a component of Cheat Engine, it runs kernelmoduleunloader.exe as a
new process and injects it with a small shellcode that merely opens a handle to the
dbk64.sys device with the CreateFileW API. The value of the handle is written as the second
QWORD in the injected buffer, read by the malware’s process and gets duplicated using the
DuplicateHandle API. From this point on, the malware’s service can call the driver as if it was
a signed Cheat Engine component.

An outline of the rootkit’s loading phases

Demodex rootkit functionality

The loaded rootkit, which we dubbed Demodex, serves the purpose of hiding several
artefacts of the malware’s service. This is achieved through a set of IOCTLs exposed by the
rootkit’s driver that are in turn called by the service’s user mode code, each disguising a
particular malicious artefact. To access the rootkit’s functionality, the malware ought to obtain
a handle to the corresponding device object, after which the following IOCTLs are available
for further use:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29150203/Ghost_Emperor_06.png

10/23

0x220204: Receives an argument with the PID of the svchost.exe process which runs
the code of the malicious service and stores it within a global variable. This variable is
used by other IOCTLs later on.
0x220224: Initializes global variables that are later used to hold data such as the
aforementioned svchost.exe PID, the name of the malware’s service, the path to the
malware’s DLL and a network port.
0x220300: Hides the malware’s service from a list within the services.exe process
address space. The service’s name is passed as an argument to the IOCTL, in turn
being sought in a system-maintained linked list. The corresponding entry is being
unlinked, thus hiding the service from being easily detected. The logic in this handler is
reminiscent of the technique outlined here.
0x220304: This IOCTL is used to register a file system filter driver’s notification routine
by using the IoRegisterFSRegistrationChange API. The notification routine invoked
upon registration of a new file system verifies if it is an NTFS-based one and if so,
creates a device object for the rootkit which is attached to the subject file system’s
device stack. Additionally, both the file system’s device object and the associated
rootkit device object are registered in a global list maintained by the rootkit’s driver.
Subsequent attempts to retrieve information from, access or modify the file will fail and
generate error codes such as STATUS_NO_MORE_FILES or
STATUS_NO_SUCH_FILE.
0x220308: Hides TCP connections that make use of ports within a given range from
utilities that list them, such as netstat. This is done through a known method whereby
the IOCTL dispatch routine of the NSI proxy driver is hooked and the completion
routine is set to one that inspects the port of a given connection. If the underlying
connection’s port falls within the given range, its entry is removed from the system’s
TCP table. The two ports that constitute the range are passed as arguments to the
IOCTL.

4

http://codeproject.com/Articles/46670/Service-Hiding#2_4

11/23

0x22030C: Hides malware-related registry keys by hooking several registry operations
through the CmRegisterCallback API. The registered callback checks the type of
operation and acts according to the following logic:

For operations of the type RegNtPostEnumerateKey or
RegNtPostEnumerateValueKey (enumeration of a key or subkey) it verifies if
there is an attempt to enumerate the driver related key under
HKLM\SYSTEM\ControlSet0**\Services\<malware_service_name> and if so, sets
the return status of the operation to STATUS_NO_MORE_ENTRIES in order to
indicate there is no data to provide for the requested enumeration.
For operations of the type RegNtPreOpenKeyEx (attempt to open a key) on
SOFTWARE\Microsoft\{EAAB20A7-9B68-4185-A447-7E4D21621943} it clears all
the driver’s internal global variables, which is equivalent to resetting its operation.
That’s because this key is used by the malware’s uninstaller PowerShell script,
mentioned in previous sections.
For any attempt to change a key under HKLM\MACHINE\SYSTEM via an
operation with code RegNtPreSaveKey or lower, it sets that return status to the
application error 0xC0000043.

Interestingly, the pointer passed to CmRegisterCallback does not contain the direct address
of the function handling the logic above, but instead an address at the end of the executable
section of the pci.sys driver’s image, which is originally filled with zeros as a means to align
the section in memory. Before passing the callback pointer to CmRegisterCallback, such a
section is sought within the pci.sys driver and the corresponding bytes within it are patched
so as to invoke the call to the actual callback handling the above logic, as outlined below.
This allows all intercepted registry operations to appear as if they are handled by code that
originates in the legit pci.sys driver.

Code used to patch a section in the pci.sys image in memory in order to write it with a short
shellcode stub that jumps into a registry inspection callback

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29150300/Ghost_Emperor_07.png

12/23

It is worth mentioning that the Demodex rootkit supports Windows 10 by design, and indeed
appears to work according to our tests on Windows 10 builds. This is evident in the driver’s
code in multiple places where different flows of the code are taken based on the underlying
operating system’s version. In such checks it is possible to observe that some flows
correspond to the latest builds of Windows 10, as outlined in the code snippet below.

Obfuscation and anti-analysis methods

The authors of the malware components used in the GhostEmperor cluster of activity have
made some development choices that have implications on the forensic analysis process. To
demonstrate some of the hurdles that investigators face, we will limit the discussion to two
common analysis tools – WinDbg and Volatility. Other tools may encounter similar drawbacks
when dealing with the implants in question.

First, due to the way Demodex is loaded, its driver is not properly enlisted in WinDbg along
with other system modules that are loaded in a documented way. That said, it is still possible
to find the rootkit’s driver object by referring to its name (\driver\dump_audio_codec0), thus
being able to list its associated device objects as well:

Driver object name listed in WinDBG

Similarly, when trying to list system modules with the Volatility3 widows.driverscan module,
the Demodex driver is absent from the output. However, the framework does indicate that an
anomaly is detected in the process of scanning the kernel’s memory space in search for the
driver:

Anomaly while listing the Demodex driver with the windows.driverscan Volatility3 module

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29150352/Ghost_Emperor_08.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29150431/Ghost_Emperor_09.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29150524/Ghost_Emperor_10.png

13/23

In addition, the malware authors have made a deliberate choice to remove all PE headers
from memory-loaded images in both the third stage of the malware and the rootkit’s driver.
This is done by either introducing the image with a zeroed-out header to begin with (as is the
case in the third stage) and relying on a custom loader to prepare it for execution or by
replacing the header of the image after its loaded with the 0x00 value, as is the case with the
rootkit’s driver. From a forensic perspective, this impedes the process of identifying PE
images loaded to memory by searching for their headers.

As mentioned in previous sections, the developers implemented a trampoline within the
pci.sys legitimate driver in order to mask the source of callbacks that are invoked for registry-
related operations. Thus, analysts that try to track such callbacks may miss out on some
because they will appear to be benign calls. As demonstrated in the WinDbg listing of the
Cm* callbacks below, one of them is associated with the symbol
pci!ArbLibraryDeinitialize+0xa4; however, if we look at the code at the same address we can
see that it is in fact a small piece of shellcode emitted by the rootkit in order to jump to the
actual malicious callback that hides the malware’s registry keys.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29150643/Ghost_Emperor_11.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29153243/Ghost_Emperor_12.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29153313/Ghost_Emperor_13.png

14/23

Listing of Cm* callbacks and shellcode found within a seemingly benign code invoked from
the pci.sys driver

Apart from the above, the developers introduced more standard methods of obfuscation that
typically slow the static analysis of the code and are evident across multiple malware
components. An example of this is a pattern of string obfuscation whereby each string is
decoded with a set of predefined arithmetic and logic operations, such that different
operands (e.g., shift offsets) are chosen for each string. This suggests that each string is
obfuscated during compilation and that the authors have established a form of SDK that aids
in uniquely obfuscating each sample during build time.

String decoding logic used to obtain clear-text strings from hardcoded blobs through a set of
arithmetic and logic operations

Similarly, it is possible to observe multiple instances of API call obfuscation in the code. This
is done by replacing inline calls to API functions with other stub functions that build the
requested API name as a stack string, resolve it using GetProcAddress and call it while
passing the arguments provided in a special struct to the stub function. The struct has a
bigger size than required to pass the argument data, and most of it is filled with junk, such
that only particular fields have meaningful data that gets encoded before being passed to the
stub. Those fields get decoded within the stub function and in turn passed to the API
function.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29153345/Ghost_Emperor_14.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29153931/Ghost_Emperor_15.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29154009/Ghost_Emperor_16.png

15/23

Example of a stub used for API call obfuscation

It is worth noting that as in the case of string obfuscation, each stub is uniquely built and
makes use of an argument struct of a different size where the fields that are occupied with
actual argument data are chosen at random. The order in which the stack string is initialized
is also random and each stub function is used only once as a replacement for a single inline
API function call. In other words, the same API function used in different places in the code
will have different stubs for each place with different argument structs. This reinforces the
observation that the authors were using a designated obfuscation SDK in which the API call
obfuscation is yet another feature.

Finally, it is possible to see that some variants appeared in both obfuscated and non-
obfuscated form. For example, we managed to view the C++ version of the second stage
loader in two forms – one form that has no obfuscation at all and another that is heavily
obfuscated (MD5: 18BE25AB5592329858965BEDFCC105AF). In the figure below we can
see the same function in the two variants: one has the original flow of the code as produced
by a compiler without obfuscation, while the other has its control flow flattened to the point
where it is impossible to track the order of actions.

Example of the same function used in two variants of the second stage loader; one is non-
obfuscated and the other’s control flow was flattened

Post-exploitation toolset

Once the attackers gain access to the compromised systems through the aforementioned
infection chain, they use a mix of legitimate and open-source offensive toolsets to harvest
user credentials and pivot to other systems in the network. This includes common utilities
from the Sysinternals suite used to control processes (e.g., PsExec, PsList and ProcDump),
as well as other tools like WinRAR, CertUtil and BITSAdmin. As for open-source tools, the

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29160413/Ghost_Emperor_17.png

16/23

attackers used tools such as mimkat_ssp, Get-PassHashes.ps1, Token.exe and Ladon.
Internal network reconnaissance and communication is often carried out by NBTscan and
Powercat.

A more comprehensive outline of these tools along with the actual command lines used by
the threat actor to operate them can be found in the supplementary technical document.

Network infrastructure

For C2 communication, the attackers registered domains whose names appear to have been
randomly generated, potentially not to attract any attention to the malicious traffic.
GhostEmperor mainly used hosting services based in Hong Kong and South Korea, such as
Daou Technology or Anchent Asia Limited.

newlylab[.]com
reclubpress[.]com
webdignusdata[.]com
freedecrease[.]com
aftercould[.]com
datacentreonline[.]com
newfreepre[.]com

We also observed additional IP addresses used for downloading some of the malicious
samples, or for C2 communication by the in-memory implant:

154.223.135[.]214
107.148.165[.]158
27.102.114[.]55
27.102.113[.]57
27.102.113[.]240

Who were the targets?

The majority of GhostEmperor’s victims were government entities and telecommunication
companies in South East Asia, with multiple high-profile entities targeted in Malaysia,
Thailand, Vietnam and Indonesia. We also observed additional victims of a similar nature
from countries such as Egypt, Ethiopia and Afghanistan. Even though the latter cluster of
victims belongs to a different region from the one in which we saw GhostEmperor to be
highly active, we noticed that some of the organizations within it have strong ties with
countries in South East Asia. This means that the attackers might have leveraged those
infections to spy on the activities in countries that are of geopolitical interest to them.

Who is behind the attacks?

17/23

We attribute this activity to a formerly unknown Chinese-speaking threat actor. This is due to
the fact that the attackers made use of open-source tools such as Ladon or Mimikat_ssp that
are popular among such actors, with additional data points such as version info found within
the resource section of second stage loader binaries that included a legal trademark field
with a Chinese character: ‘Windows庐 is a registered trademark of Microsoft Corporation.’

Version info of loader binary with a Chinese character

On the same note, we observed that one of the decryption keys provided in a command line
by the attackers and used to decode the first stage PowerShell scripts was ‘wudi520’.
Looking it up in publicly available sources led us to a GitHub account under the same name.
Although we cannot confirm this account is indeed connected to the GhostEmperor
attackers, it has forked multiple code repositories with descriptions in Chinese or that are
otherwise authored by Chinese-speaking developers.

“wudi520” GitHub account

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29160500/Ghost_Emperor_18.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29162318/Ghost_Emperor_19.png

18/23

In addition, we noticed some similarities between the features of Demodex and those of the
Derusbi rootkit, which was publicly described in the past and also attributed to a Chinese-
speaking actor. The purpose of both is to hide malicious artefacts, where notably both have
an almost identical flow for hiding TCP connections by hooking the nsiproxy.sys IOCTL
dispatcher. The implementation of this filtering in the Demodex sample we analyzed is nearly
identical to one seen in an older Derusbi sample (MD5:
24E9870973CEA42E6FAF705B14208E52) to the point that both use the same device
control code for this action and receive an IOCTL input of the same size. That said, it is
worth noting that while Derusbi used a hardcoded range of 1025 to 1777 for the targeted
ports to hide, Demodex allows for an arbitrary range that can be configured by the attackers
through the user mode malware.

https://airbus-cyber-security.com/fr/newcomers-derusbi-family/

19/23

Comparison of a similar IOCTL in the Demodex and Derusbi rootkits

It is worth noting that in one of the victim systems we observed two instances of malicious
samples being dropped via a web shell. One led to the initiation of an infection chain
consisting of the first stage PowerShell dropper and second stage .NET service DLL, and
another was a drop of two binaries of the Netbot malware, formerly seen being used by the
Lucky Mouse group. Though we cannot attest to the fact that the very same web shell was

5 6

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/09/29162420/Ghost_Emperor_20.png

20/23

used to drop both files, the proximity of events which occurred in the course of two days,
may suggest that underlying actor indeed deployed both samples and that it has a possible
connection to the Lucky Mouse group, whether through shared development resources or
reused tools.

Conclusions

GhostEmperor is an example of an advanced threat actor that goes after prominent targets
and aims to maintain a long standing and persistent operation within their environments. We
observed that the underlying actor managed to remain under the radar for months, all the
while demonstrating a finesse when it came to developing the malicious toolkit, a profound
understanding of an investigator’s mindset and the ability to counter forensic analysis in
various ways.

Additionally, while rootkits are generally considered a deprecated method of attack, this case
and other recent ones show that with a creative approach they can still be leveraged to gain
a considerable level of stealth. As we have seen, the attackers conducted the required level
of research to make the Demodex rootkit fully functional on Windows 10, allowing it to load
through documented features of a third-party signed and benign driver. This suggests that
rootkits still need to be taken into account as a TTP during investigations and that advanced
threat actors, such as the one behind GhostEmperor, are willing to continue making use of
them in future campaigns.

Indicators of compromise

Stage 1 – PowerShell Dropper

012862165EC105A44FEA14FACE53492F – u_ex200822.ps1

Stage 2 – Service DLL

6A44FDD66AB841C33949620666CA847A – RAudioUniConfig.dll
 2DD0885F84B890883A396030DB841D28

1BC301AA9B861F762CE5F376228E992A – svchosts.exe

Stage 4

0BBFBA106FBB9E310330DC87C32CB6D1 – Payload DLL
 6685323C61D8EDB4A6E35796AF34D626 – Remote Desktop Control DLL

Post-exploitation

BE38D173E4E9118BDC2E83FD5F90BE3B – kekeo.exe
 F078AC9B012C503D35254AF9629D3B67 – debugall.vbs

https://securelist.com/operation-tunnelsnake-and-moriya-rootkit/101831/

21/23

Driver

7394229455151a9cd036383027a1536b

File paths

C:\Windows\debug\wia

PDB paths

C:\c\getpwd\x64\Release\getpwd.pdb
 D:\Source\workspace\ExCtrl\XControl\Release\XCLoader.pdb

Service name and DLL path

MsMp4Hw – C:\Windows\System32\msmp4dec.dll
 Msdecode – C:\ProgramData\Microsoft\Network\Connections\msdecode.dll

 AuthSvc – C:\Windows\System32\AuthSvc.dll

Registry keys for encrypted buffer

HKLM\Software\Microsoft\hiaudio
 HKLM\Software\Microsoft\midihelp
 HKLM\Software\Microsoft\data

 HKLM\Software\Microsoft\update

Domains and IPs

imap.newlylab[.]com
 mail.reclubpress[.]com

 imap.webdignusdata[.]com
 freedecrease[.]com

 aftercould[.]com
 datacentreonline[.]com

 game.newfreepre[.]com

27.102.113[.]57
 27.102.113[.]240

 27.102.114[.]55
 27.102.115[.]51
 27.102.129[.]120

 107.148.165[.]158
 154.223.135[.]214

 This approach is well documented and demonstrated in the DSEFix public repository:
https://github.com/hfiref0x/DSEFix

1

22/23

 The source code of the driver can be found on GitHub.

 They are outlined in the IOPLDispatcher.c source code within the Cheat Engines repository.

 A technique similar to the one observed in the Demodex rootkit is outlined in this code:
https://github.com/bowlofstew/rootkit.com/blob/master/cardmagic/PortHidDemo_Vista.c

 Those binaries had the MD5s: 145FF08E736693D522F8A09C8D3405D6,
7A162C26D56B0C55E6CD81CD953F510B

 https://securelist.com/ksb-2019-review-of-the-year/95394/, detailed analysis of the Netbot
malware as part of Lucky Mouse campaigns is available to customers of our APT reporting
service.

APT
Drivers
Dropper
Malware Descriptions
Malware Technologies
Microsoft
Rootkits
Targeted attacks
Vulnerabilities

Authors

 Mark Lechtik

 Aseel Kayal

 Paul Rascagneres

 Vasily Berdnikov

GhostEmperor: From ProxyLogon to kernel mode

2

3

4

5

6

https://github.com/cheat-engine/cheat-engine/blob/master/DBKKernel/IOPLDispatcher.c
https://securelist.com/ksb-2019-review-of-the-year/95394/
https://securelist.com/tag/apt/
https://securelist.com/tag/drivers/
https://securelist.com/tag/dropper/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/microsoft/
https://securelist.com/tag/rootkits/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/vulnerabilities/
https://securelist.com/author/marklechtik/
https://securelist.com/author/aseelkayal/
https://securelist.com/author/paulrascagneres/
https://securelist.com/author/vasilyberdnikov/

23/23

Your email address will not be published. Required fields are marked *

