
1/12

All your hashes are belong to us: An overview of
malware hashing algorithms

gdatasoftware.com/blog/2021/09/an-overview-of-malware-hashing-algorithms

VirusTotal's "Basic Properties" tab alone lists eight different hashes and supports even more
to use them for queries and hunt signatures. Hashes are important for malware analysis, as
well as identification, description and detection. But why do so many of them exist and when
should you use which hash function?

Cryptographic hashes: MD5, SHA-1, SHA-256

Cryptographic hashing algorithms are a mathematical function that produces an
alphanumeric string that is unique for a specific file or data input, making it an unalterable
identifier. Unlike encryption, cryptographic hashing is a one-way function and only works in
one direction. It is designed to be practically infeasible to compute the original input based on
the hash value alone. Even changing a single byte in the input will result in a different hash
value. That way an adversary cannot see if their input sample is anywhere close to
producing the desired hash value.

All of these hashes have a fixed length. For the standard implementation of MD5 it is 128 bits
(16 bytes), for SHA-1 160 bits (20 bytes) and for SHA256 the length is in the name: 256 bits
(32 bytes).

https://www.gdatasoftware.com/blog/2021/09/an-overview-of-malware-hashing-algorithms

2/12

The main purposes of these hashes are identification and blocklisting of samples. Using
them for blocklisting makes sense because an attacker will have difficulty to design a
malware with the same hash value as a clean file. They are ideal for identification because
cryptographically secure hashes are meant to make collisions unlikely.

MD5 and SHA-1 should not be used anymore because they have been broken [fisher20]
[kashyap06]. E.g. for MD5 people can create hash collisions in a way that allows control over
the content [kashyap06]. But both are still sometimes used in hash listings of malware
articles and some detection technologies might still work with MD5 hashes because
computing them is fast and the values don't need much storage space. Therefore it is an
important and common search option for sample databases.

Fuzzy Hashes: dcfldd, ssdeep, TLSH, mvHash-B

Fuzzy hashes are also called Similarity Preserving Hash Functions (SPHF). Unlike
cryptographic hashes their goal is to provide a comparison or similarity measure. Fuzzy hash
functions are further categorized into four types [p.1, martinez14]:

Block-Based Hashing (BHB), e.g., the program dcfldd by Harbour creates hash values
via BHB
Context-Triggered Piecewise Hashing (CTPH), of which the most popular example is
ssdeep
Statistically-Improbable Features (SIF), e.g., sdhash
Block-Based Rebuilding (BBR). e.g., mvHash-B

BHB creates a hash for every fixed-sized block of the input data. The larger the input data,
the longer the resulting hash value will be. A similarity is determined by counting all blocks
with the same hash value. BHB is used in forensics (dcfldd is a forensics tool) but not so
much for sample analysis. Maybe because the arbitrary and potentially large size of the hash
value makes it impractical for signatures and storage.

CTPH uses trigger points instead of fixed-sized blocks. Everytime a specific trigger point hits,
the algorithms calculates a hash value of the current chunk of data. The conditions for the
trigger points are chosen in such a way that the final hash value doesn't grow arbitrarily in
size with increased input data size. E.g., ssdeep has a desired number of 64 chunks per
input file, so the trigger point is dependent on the size of input data. To compare two files,
ssdeep uses an edit distance algorithm: The more steps it takes to transform one ssdeep
hash value to the other, the less similar the files are.

The development of ssdeep was a milestone at the time. New hashing algorithms which
improve certain aspects of ssdeep have been created since. E.g., SimFD has a better false
positive rate and MRSH improved security aspects of ssdeep [breitinger13]. The author's

http://dcfldd.sourceforge.net/
https://ssdeep-project.github.io/ssdeep/index.html

3/12

website states that ssdeep is still often preferred due to its speed (e.g., compared to TLSH)
and it is the "de facto standard" for fuzzy hashing algorithms used for malware samples and
their classification. Sample databases like VirusTotal and Malwarebazaar support it.

TLSH stands for Trend-Micro Locality Sensitive Hash, which was published in a paper in
2013 [oliver13]. According to their paper TLSH has better accuracy than ssdeep when
classifying malware samples [p.12, oliver13]. Just like ssdeep it is a CTPH. TLSH is
supported by VirusTotal.

The idea of SIF hashing is to find features of a file that are unlikely present by chance and
compare those features to other files. Sdhash uses entropy calculation to pick the relevant
features and then creates the hash value based on them. That also means sdhash cannot
fully cover a file and modifications to a file may not influence the hash value at all if they are
not part of a statistically-improbable feature. Sdhash shows better accuracy than ssdeep
when classifying malware samples [p.12, oliver13][roussev11]. However, its strong suit is the
detection of fragments and not comparison of files [p.8, breitinger12].

BBR uses auxiliary data to rebuild a file. mvHash-B for instance maps every byte of the input
file to either 0xFF or 0x00 by comparing it to its neighbors via a majority voting. If most of the
neighbors are 1, the byte becomes 0xFF, otherwise 0x00. Afterwards the byte sequences are
compressed to form a hash value. Other examples are the algorithms discussed in the
section Image similarity: aHash, pHash, dHash

Control Flow Graph hashing: Machoc and Machoke

Machoc creates a numeric representation of a sample's control flow graph (CFG). Suppose
you have a CFG like in the image on the right. The numbered blocks are turned into the
following string (example from Github page):

1:2,3;
2:;
3:4,10;
4:6;
5:6;
6:c,7;
7:c,8;
8:5,9;
9:10;
10:;

Machoc then applies Murmuhash3 to this string to create the final hash value. Therefore,
samples with the same control flow graph will have the same hash value.

Machoke is the same algorithm, but a different implementation. Machoc bases their control
flow graphs on IDAPython or miasm, whereas Machoke uses radare2 and r2pipe.

https://ssdeep-project.github.io/ssdeep/index.html
https://github.com/ANSSI-FR/polichombr/blob/dev/docs/MACHOC_HASH.md
https://github.com/ANSSI-FR/polichombr/blob/dev/docs/MACHOC_HASH.md
https://github.com/conix-security/machoke

4/12

These hashing algorithms are limited to the executable types supported by their
disassemblers and are vulnerable to control flow obfuscation.

Control flow graph hashes are not only useful for AV detection and sample clustering. They
are also suitable to get a binary diff for samples, i.e., to identify similar and different functions
in two samples. Binary diffing is a common technique for malware analysis to find differences
between two versions of a malware family or identify re-used code in different malware
families. Control flow hashing may also be applied to automatically rename known functions,
thus, improve the readability of disassembled code for reversers.

5/12

Machoc applies block numbering to a control flow

graph; image from https://github.com/ANSSI-
FR/polichombr/blob/dev/docs/screenshots/cfg_numbered.png

Import hashing: ImpHash, TypeRefHash and ImpFuzzy

All of these hashing algorithms work with imported functions, types or modules. The idea is
that the imports indicate behavioral capabilities of a malware, so a hash value will hopefully
be the same for samples with similar capabilities.

https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2021/08/cfg_numbered.png

6/12

The ImpHash is used specifically for Portable Executable (PE) files and based on the PE
import table contents. It concatenates the imported function names and module names, puts
them to lowercase, then creates the MD5 value of the resulting string. That MD5 value is the
ImpHash.

Explanation video of Imphash history and algorithm

Windows samples that are based on the .NET framework are also PE files. However, usually
they only have one PE import, which is the .NET runtime. So the ImpHash is rather useless
for .NET based PE files. Everything that is imported by the user-defined .NET code resides
in .NET specific metadata tables. The TypeRef table is the .NET counterpart to the PE import
table. It contains namespaces and types used by the sample. The TypeRefHash algorithm
orders and concatenates TypeNamespaces and TypeNames, then creates the SHA-256
hash value of the resulting string.

The choice of using a cryptographic hash as intermediate step for import hashing is not ideal
when keeping in mind that the idea behind ImpHash was to cluster samples of similar
behavioral capabilities. Algorithms like ImpHash and TypeRefHash only determine clusters of
samples that have exactly the same imports. Fuzzy hash values look similar if the input was
similar. That is is why algorithms like ImpFuzzy were created, which uses ssdeep instead of
MD5. A recent study [naik20] shows better results in malware classification tasks for fuzzy
import hashing methods that employ ssdeep, sdHash or mvHash-B compared to MD5 for the
ImpHash.

The ImpFuzzy blog post evaluates malware family classification for 200 non-packed samples
using either ssdeep for the whole file, ImpHash (MD5 on imports) or ImpFuzzy (ssdeep on
imports). For this specific test setup, ImpFuzzy shows consistently better success rates than
the other two hashing algorithms (see image below) but the author also states that this
setting creates false positives.

https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.gdatasoftware.com/blog/2020/06/36164-introducing-the-typerefhash-trh
https://blogs.jpcert.or.jp/en/2016/05/classifying-mal-a988.html
https://blogs.jpcert.or.jp/en/2016/05/classifying-mal-a988.html

7/12

Malware classification success rates of ImpFuzzy vs ImpHash vs ssdeep, image from
https://blogs.jpcert.or.jp/en/2016/05/classifying-mal-a988.html

Human readable hash: Humanhash

The humanhash has one purpose: It should be rememberable and pronouncable by humans,
so we can search for these hash values in databases. Example hashes are "happy-edward-
three-xray", "johnny-triple-william-jig" or "virginia-quebec-march-london".

The hash value is created by converting the input size to 4 bytes, then mapping each byte to
a wordlist. The author states its uniqueness is 1 in 4.3 billion. This hash is not robust against
collisions, but it does not have to be.

The original author's Github page states humanhash was inspired by Chroma-Hash, which is
a colorful representation of hashes, and the NATO phonetic alphabet.

In my personal opinion more sample sharing platforms should add humanhash to their list of
hashes. E.g., it would be a great addition to VirusTotal. Malwarebazaar supports humanhash
and seeing it among the other hash values (image below) makes apparent what this sample
will be remembered by apart from the filename and AgentTesla tag.

https://github.com/zacharyvoase/humanhash

8/12

Hash listing on Malwarebazaar for the virginia-quebec-march-london sample

Image similarity: aHash, pHash, dHash

Checking icon similarity is especially useful if malware pretends to be a known application or
office document. E.g., it is common for malware to try to appear as Word or PDF document
by using icons for these applications in combination with double extensions like pdf.exe or
file extension spoofing. Detecting such malware techniques with signatures or searching for
them in databases is possible with similarity hashes that are specifically for comparing
pictures, e.g., VirusTotal and Malwarebazaar support searches via dHash.

There are many hashing algorithms for image comparison, e.g., this blog article compares
six of them. But the ones mentioned the most are pHash, aHash and dHash.

All three hashing algorithms first resize the picture to a fixed size and then convert it into
grayscale. At this point aHash aka average hash compares every pixel value to the average
grayscale pixel value of the image. If it is greater (= brighter) than the average, it sets the
pixel to 1, otherwise to 0. pHash aka perceptual hash applies a Discrete Cosine Transform
and compares pixels based on frequencies. dHash aka difference hash compares every
pixel to their right neighbor (except the last one in each row). If the pixel value is increasing,
it is set to 1; otherwise it is set to 0.

The consensus according to several articles [animeloop17][hackerfactor13] seems to be that
dHash is the fastest of the three algorithms and also accurate, but it does not detect
similarity in cropped images. pHash has the best accuracy but also the worst performance.
aHash seems to be the least accurate of the three algorithms.

https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2021/08/malwarebazaar.png
https://content-blockchain.org/research/testing-different-image-hash-functions/

9/12

Image hashing algorithms are also used in sample clustering and applied to an image
visualization of the malware file itself [bhaskara18].

Result of different image hashing algorithms

Digital certificates: Authentihash

This cryptographic hash is computed on signed PE files and an important part of Microsoft's
digital signature format Authenticode. Its purpose is to verify that a file has not been
tampered with after it has been signed by a software publisher. File manipulation would
result in a different hash value than the one listed in the file's digital signature. The
Authentihash includes the PE image excluding certificate related data and overlay. That
means appended data does not affect the hash value which has been abused by polyglot
malware, that is malware that has several file types at once. More details about such
malware is in the article "Code-Signing: How Malware gets a Free Pass"

Additionally appended data is sometimes also used to store settings of a file. E.g., as seen in
MuddyWater campaign samples, the ScreenConnect clients have a valid certificate, but
potentially risky settings are in the overlay and do not affect the signature.

For malware analysts Authentihash is useful to verify digital signers and to find such polyglot
malware files or similar singed files with different appended data, e.g., with VirusTotal
queries.

https://www.gdatasoftware.com/fileadmin/_processed_/b/d/imagehashing_dc3502c6f6.png
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
https://www.gdatasoftware.com/blog/how-malware-gets-a-free-pass
https://www.anomali.com/blog/probable-iranian-cyber-actors-static-kitten-conducting-cyberespionage-campaign-targeting-uae-and-kuwait-government-agencies

10/12

Appended malicious Java archive to a signed MSI file, resulting in a validly signed malware
executable. Image from https://www.gdatasoftware.com/blog/how-malware-gets-a-free-pass

Rich PE Header hashes: Rich, RichPV

The Rich Header is part of Portable Exectuable files since Visual Studio 97 SP3. According
to a study conducted in 2019 [p. 5, poslusny19], the Rich Header exists in 73.20 percent of
all native PE files and represents a fingerprint of the development environment. That means
it is useful for attribution, sample hunting, clustering, and as part of detection signatures.

The Rich Header hash or short Rich is calculated the following way [p. 8, dubyk19]: Part of
the Rich Header is XOR encrypted. The Rich Header algorithm first searches for the
decryption key, then decrypts the rich header data between the magic values "DanS",
indicating the beginning of the plain text header, and "Rich", indicating the end of the plain
text header. Finally the MD5 hash function is applied on the decrypted area. The resulting
hash value is the Rich Header hash of the sample. The XOR decryption makes sure that the
same Rich Header data contents yield the same hash value if the XOR key changes.

One modification of Rich is called RichPV and excludes the most volatile Rich Header field
from the MD5 input data, the so called pC or Product Count field [p. 8, dubyk19]. "pC
measures the number of source files referenced by the PE. As a result, the pC field has the
potential to change across different PEs as the number of source files increase and
decrease even if the products and their versions remain constant" [p. 8, dubyk19]. So
generally, if we want to find samples that were compiled on the same system, from the same
source code project, RichPV hash should be more suitable than Rich hash.

VirusTotal displays the Rich hash in the Details tab. RichPV might be a useful addition to
that.

11/12

References

[animeloop17] "Animeloop: animation loop recognition", September 2017
https://blog.windisco.com/animeloop-paper-en/

[bhaskara18] Vineeth S. Bhaskara and Debanjan Bhattacharyya, "Emulating malware
authors for proactive protectionusing GANs over a distributed image visualization ofdynamic
file behavior", July 2018, https://arxiv.org/pdf/1807.07525.pdf

[breitinger12] F. Breitinger and H. Baier, "Properties of a similarity preserving hash function
and their realization in sdhash," 2012 Information Security for South Africa, 2012, pp. 1-8,
doi: 10.1109/ISSA.2012.6320445.

[breitinger13] Breitinger F., Baier H. (2013) "Similarity Preserving Hashing: Eligible Properties
and a New Algorithm MRSH-v2". In: Rogers M., Seigfried-Spellar K.C. (eds) Digital
Forensics and Cyber Crime. ICDF2C 2012. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, vol 114. Springer, Berlin,
Heidelberg. doi.org/10.1007/978-3-642-39891-9_11

[dubyk19] Dubyk, Maksim. "Leveraging the PE Rich Header for Static Malware Detection and
Linking." (2019). https://www.giac.org/paper/grem/6321/leveraging-pe-rich-header-static-
alware-etection-linking/169729

[fisher20] Dennis Fisher, "SHA-1 ‘Fully and Practically Broken’ By New Collision", January
2020 https://duo.com/decipher/sha-1-fully-and-practically-broken-by-new-collision

[hackerfactor13] Neal Krawetz, "Kind of Like That", January 2013,
http://www.hackerfactor.com/blog/?/archives/529-Kind-of-Like-That.html

[kashyap06] Kashyap N. A "Meaningful MD5 Hash Collision Attack" [Internet]. 2006.
Available at: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.126.2659&rep=rep1&type=pdf

[kim20] Kim, Jun-Seob & Jung, Wookhyun & Kim, Sangwon & Lee, Shinho & Kim, Eui.
(2020). Evaluation of Image Similarity Algorithms for Malware Fake-Icon Detection. 1638-
1640. 10.1109/ICTC49870.2020.9289501.

[martinez14] Martínez, V., F. Álvarez and L. H. Encinas. “State of the Art in Similarity
Preserving Hashing Functions.”, 2014,
https://digital.csic.es/bitstream/10261/135120/1/Similarity_preserving_Hashing_functions.pdf

[naik20] N. Naik, P. Jenkins, N. Savage, L. Yang, T. Boongoen and N. Iam-On, "Fuzzy-Import
Hashing: A Malware Analysis Approach," 2020 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), 2020, pp. 1-8, doi: 10.1109/FUZZ48607.2020.9177636.

https://blog.windisco.com/animeloop-paper-en/
https://arxiv.org/pdf/1807.07525.pdf
https://doi.org/10.1007/978-3-642-39891-9_11
https://www.giac.org/paper/grem/6321/leveraging-pe-rich-header-static-alware-etection-linking/169729
https://duo.com/decipher/sha-1-fully-and-practically-broken-by-new-collision
http://www.hackerfactor.com/blog/?/archives/529-Kind-of-Like-That.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.2659&rep=rep1&type=pdf
https://digital.csic.es/bitstream/10261/135120/1/Similarity_preserving_Hashing_functions.pdf

12/12

[oliver13] Oliver, J., Cheng, C., Chen, Y.: "TLSH - A Locality Sensitive Hash. 4th Cybercrime
and Trustworthy Computing Workshop", Sydney, November 2013
https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

[poslusny19] Poslušný, Michal & Kálnai, Peter. (2019). "Rich Headers: leveraging this
mysterious artifact of the PE format for threat hunting."
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Kalnai-Poslusny.pdf

[roussev11] Vassil Roussev, "An evaluation of forensic similarity hashes," Digital
Investigation, vol. 8, Supplement, no. 0, pp. 34 – 41, 2011.

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Kalnai-Poslusny.pdf

