
1/35

How to defeat the Russian Dukes: A step-by-step
analysis of MiniDuke used by APT29/Cozy Bear

cybergeeks.tech/how-to-defeat-the-russian-dukes-a-step-by-step-analysis-of-miniduke-used-by-apt29-cozy-bear/

Summary

APT29/Cozy Bear is a Russian actor that has been associated with Russia’s Foreign
Intelligence Service (SVR). The US government has blamed this actor for the SolarWinds
supply chain compromise operation, as described at
https://media.defense.gov/2021/Apr/15/2002621240/-1/-1/0/CSA_SVR_TARGETS_US_ALLI
ES_UOO13234021.PDF/CSA_SVR_TARGETS_US_ALLIES_UOO13234021.PDF.
MiniDuke is a backdoor written in pure assembly that was previously documented by ESET
at https://www.welivesecurity.com/wp-
content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf and Kaspersky at
https://securelist.com/miniduke-is-back-nemesis-gemina-and-the-botgen-studio/64107/,
however, this sample is the most recent one (June 2019) that we’re aware of and hasn’t
been documented before. This malware is pretty obfuscated (control-flow flattening) and
implements multiple methods of data exfiltration, such as using POST and PUT HTTP
methods in the case of sending data to the C2 server or using a named pipe in the case of
no Internet connectivity. The backdoor implements 37 different functions that can be
visualized below (some of these are similar/identical and were skipped):

https://cybergeeks.tech/how-to-defeat-the-russian-dukes-a-step-by-step-analysis-of-miniduke-used-by-apt29-cozy-bear/
https://media.defense.gov/2021/Apr/15/2002621240/-1/-1/0/CSA_SVR_TARGETS_US_ALLIES_UOO13234021.PDF/CSA_SVR_TARGETS_US_ALLIES_UOO13234021.PDF
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf
https://securelist.com/miniduke-is-back-nemesis-gemina-and-the-botgen-studio/64107/

2/35

Analyst: @GeeksCyber

Technical analysis

SHA256: 6057b19975818ff4487ee62d5341834c53ab80a507949a52422ab37c7c46b7a1

The malware uses the SetUnhandledExceptionFilter function in order to set the exception
filter function to a particular function:

https://twitter.com/GeeksCyber

3/35

Figure 1
The process retrieves the content of the STARTUPINFO structure by calling the
GetStartupInfoA routine, as shown below:

Figure 2
A new thread is created by the malicious file using the CreateThread API:

Figure 3
Thread activity – sub_4036D0

As mentioned by ESET at https://www.welivesecurity.com/wp-
content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf, the backdoor has added a lot
of obfuscation that consists of control-flow flattening (every function is split in a switch/case,
and a lot of computation that is useless for the main execution flow is added):

Figure 4
Figure 5 presents an example of an instruction that jumps to a place where a lot of useless
computation occurs. We’ve added NOP operations in place of the jump and patched the
binary:

Figure 5

https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf

4/35

The binary forces the system not to display the Windows Error Reporting dialog (0x2 =
SEM_NOGPFAULTERRORBOX):

Figure 6
The kernel32.dll, advapi32.dll and winninet.dll DLLs are loaded into the address space using
the LoadLibraryA routine:

Figure 7
The functions that will be used during the execution are located using a hashing mechanism.
Basically, for each function name from a DLL, the malware computes a 4-byte value that is
compared with a hard-coded one:

Figure 8
The following APIs belong to the targeted list: GetProcAddress, GetLongPathNameA,
GetLastError, CreateProcessWithLogonW, CryptAcquireContextW, CryptGenRandom,
InternetOpenA, InternetConnectA, InternetSetOptionA, HttpOpenRequestA,
HttpSendRequestA, HttpQueryInfoA, InternetReadFile, InternetCloseHandle,
HttpAddRequestHeadersA. The hashing function is displayed below:

Figure 9

5/35

The CryptAcquireContextW API is utilized to get a handle to a key container within a CSP
(cryptographic service provider). The function call is presented in figure 10 (0x1 =
PROV_RSA_FULL, 0xF0000040 = CRYPT_VERIFYCONTEXT | CRYPT_SILENT):

Figure 10
AllocateAndInitializeSid is used to allocate and initialize a SID with one subauthority:

Figure 11
The file creates a new ACL using the SetEntriesInAclA routine (0x2 = SET_ACCESS):

Figure 12
A new security descriptor is initialized by the malicious process (0x1 =
SECURITY_DESCRIPTOR_REVISION):

Figure 13
The malware sets information in a DACL (discretionary access control list) using the
SetSecurityDescriptorDacl API:

6/35

Figure 14
The following relevant strings are written into memory and will be used later on:

Figure 15

CryptGenRandom is utilized to generate 16 random bytes. The first 15 bytes are encoded
using the Base64 algorithm:

Figure 16
The binary writes the file signature of JPEG in the JFIF format into the memory. These bytes
will be used in data exfiltration, as we’ll describe in the following paragraphs:

Figure 17
The process creates the “Software\Microsoft\ApplicationManager” registry key using the
RegCreateKeyA API (0x80000001 = HKEY_CURRENT_USER):

Figure 18
A new value called “AppID” is created under the above registry key. This value is computed
using the output of a GetTickCount function call:

Figure 19

7/35

There are 2 more calls to the GetTickCount routine (it retrieves the number of milliseconds
that elapsed since the system was started):

Figure 20
One of the outputs from above is transformed and written into a buffer, along with the
“AppID” value. This buffer will be encrypted using a custom algorithm that also includes the
XOR operator:

Figure 21
The encryption algorithm and the result of the above operation are highlighted in figure 22:

8/35

Figure 22

The backdoor initializes the use of the WinINet functions using the InternetOpenA API with a
particular user agent:

Figure 23
The proxy is set to 10.1.1.1:8080 using the InternetSetOptionA function (0x26 =
INTERNET_OPTION_PROXY):

Figure 24
The connect time-out value for connection requests is set to 11 seconds (0x2 =
INTERNET_OPTION_CONNECT_TIMEOUT):

9/35

Figure 25
The receive time-out value for connection requests is set to 11 seconds (0x6 =
INTERNET_OPTION_RECEIVE_TIMEOUT):

Figure 26
The send time-out value for connection requests is set to 11 seconds (0x5 =
INTERNET_OPTION_SEND_TIMEOUT):

Figure 27
InternetConnnectA is utilized to open an HTTP session with the C2 server
salesappliances[.]com (0x3 = INTERNET_SERVICE_HTTP):

Figure 28
The malware implements 3 different cases for exfiltrating the buffer that was encrypted
earlier (or outputs from backdoor functions), depending on the availability of Internet
connectivity.

Case 1 (no Internet availability)

WaitNamedPipeA is used to wait until 11 seconds have elapsed or an instance of the
“\\pipe\DefPipe” pipe is available for connection (this pipe is supposed to be utilized between
this machine and another machine that has an Internet connection):

10/35

Figure 29
The process opens the specified pipe using the CreateFileA routine (0xC0000000 =
GENERIC_READ | GENERIC_WRITE, 0x3 = OPEN_EXISTING):

Figure 30
SetNamedPipeHandleState is utilized to set the read mode and the blocking mode of the
pipe mentioned above (0x2 = PIPE_READMODE_MESSAGE, 0x0 = PIPE_WAIT):

Figure 31
The binary writes the encrypted buffer to the specified pipe using the TransactNamedPipe
API:

Figure 32
Case 2 (Data exfiltration using PUT method)

A new HTTP request handle is created by the file (0x80400100 =
INTERNET_FLAG_RELOAD | INTERNET_FLAG_KEEP_CONNECTION |
INTERNET_FLAG_PRAGMA_NOCACHE):

11/35

Figure 33
The Referer header is added to the HTTP request handle using HttpAddRequestHeadersA
(0x20000000 = HTTP_ADDREQ_FLAG_ADD):

Figure 34
The Accept-Language header is added to the HTTP request handle using
HttpAddRequestHeadersA (0x20000000 = HTTP_ADDREQ_FLAG_ADD):

Figure 35
The Accept-Encoding header is added to the HTTP request handle using
HttpAddRequestHeadersA (0x20000000 = HTTP_ADDREQ_FLAG_ADD):

Figure 36
The process exfiltrates the encrypted buffer to the C2 server by calling the
HttpSendRequestA routine, as shown below:

12/35

Figure 37
Case 3 (Data exfiltration using POST method)

A new HTTP request handle is created by the file (0x80400100 =
INTERNET_FLAG_RELOAD | INTERNET_FLAG_KEEP_CONNECTION |
INTERNET_FLAG_PRAGMA_NOCACHE):

Figure 38
The Referer header is added to the HTTP request handle using HttpAddRequestHeadersA
(0x20000000 = HTTP_ADDREQ_FLAG_ADD):

Figure 39
The Accept-Language header is added to the HTTP request handle using
HttpAddRequestHeadersA (0x20000000 = HTTP_ADDREQ_FLAG_ADD):

Figure 40
The Accept-Encoding header is added to the HTTP request handle using
HttpAddRequestHeadersA (0x20000000 = HTTP_ADDREQ_FLAG_ADD):

13/35

Figure 41
The encrypted buffer is added to a fake JPEG image (note the file signature in the network
traffic) and transmitted to the C2 server without raising any suspicion:

Figure 42
HttpOpenRequestA is utilized to create a new HTTP request handle. The HTTP method is
set to GET (0x80480100 = INTERNET_FLAG_RELOAD |
INTERNET_FLAG_KEEP_CONNECTION | INTERNET_FLAG_NO_COOKIES |
INTERNET_FLAG_PRAGMA_NOCACHE):

Figure 43
The file generates 256 random bytes via a function call to CryptGenRandom (the result will
be Base64-encoded, and a small part of the output is used as a parameter in the Referer
header):

Figure 44
The Referer, Accept-Language and Accept-Encoding headers are set as described before.
The encrypted buffer that was exfiltrated using one of the 3 methods is Base64-encoded:

14/35

Figure 45

The Cookie header is set to a string that is obtained from the above using some
transformations, and the request is sent to the C2 server, as shown in figure 46.

Figure 46
Here is the network request captured by FakeNet:

Figure 47
It’s important to mention that the backdoor also performs a “cleaning” operation by freeing
the memory in order to hide possible IOCs that could be extracted from it:

Figure 48
The status code returned by the server is extracted and compared with 200 (0x20000013 =
HTTP_QUERY_FLAG_NUMBER | HTTP_QUERY_STATUS_CODE):

Figure 49

15/35

The malicious binary retrieves the size of the resource using the HttpQueryInfoA API
(0x20000005 = HTTP_QUERY_FLAG_NUMBER | HTTP_QUERY_CONTENT_LENGTH):

Figure 50
There is a function call to InternetReadFile, which is utilized to read data received from the
C2 server:

Figure 51
The response from the C2 server is parsed, and the byte at position 0x1c (28 in decimal) is
extracted. There is also a “checksum” of the 5th-8th bytes that is computed, and the result
should match the first 4 bytes. We will describe each case depending on that particular byte.

Byte = 0x11 – read the content of a file specified by the C2 server and compute the MD5
hash of it

The path of the %TEMP% directory is extracted using GetTempPathA:

Figure 52
The path of the %TEMP% directory is converted to its long form by calling the
GetLongPathNameA routine, as highlighted below:

Figure 53
GetCurrentDirectoryA is utilized to extract the current directory for the current process:

16/35

Figure 54
The response from the C2 server is supposed to contain a file name, which is opened via a
CreateFileA function call (0x80000000 = GENERIC_READ, 0x1 = FILE_SHARE_READ, 0x3
= OPEN_EXISTING, 0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 55
The malware creates an unnamed file mapping object using the CreateFileMappingA API
(0x8 = PAGE_WRITECOPY):

Figure 56
The malicious binary maps the newly created file mapping into the address space of the
calling process, as shown in the next pictures (0x1 = FILE_MAP_COPY):

Figure 57
Figure 58

The MD5 hashing algorithm is implemented by the malware (note the variables from below),
which is used to perform hashing of the file content extracted above:

17/35

Figure 59

Figure 60
The resulting buffer that will be exfiltrated is similar to the one from figure 21, however, it also
contains the MD5 hash value and the file name. The encryption algorithm is the same
presented in figure 22 (this is valid for all cases, and we will not repeat it every time):

Figure 61
Byte = 0x12 – create and populate a new file

18/35

The backdoor creates a new file specified by the C2 server in the network traffic
(0x40000000 = GENERIC_WRITE, 0x1 = FILE_SHARE_READ, 0x1 = CREATE_NEW,
0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 62
The newly created file is populated with content provided by the C2 server as well:

Figure 63
The final buffer that will be exfiltrated contains the file name:

Figure 64

Byte = 0x13 (same execution flow as 0x11)

Byte = 0x14 – write specific bytes into memory depending on the C2 server response

Depending on 2 bytes received from the C2 server, the binary writes 0x100, 0x200, 0x400,
0x800, 0x1000 or 0x2000 into memory. The first 3 cases are highlighted in figure 65:

Figure 65
The buffer that will be exfiltrated contains a 4-byte value computed from a GetTickCount
function call, the “AppID” value and a marker value (0x81 in this case):

Figure 66

Byte = 0x15 – listen on port 8080 and record all connections that are established on this port

A new thread is created using the CreateThread routine:

19/35

Figure 67
The process creates a new socket using the socket API. The inet_addr function is utilized to
convert a string containing an IP dotted-decimal address into a proper address for the
IN_ADDR structure, as shown below:

Figure 68
There is a mistake done by the malware developers because they’ve called the inet_addr
routine with the C2 server as the parameter (and not an IP as above). This function call
returns INADDR_NONE (0xFFFFFFFF):

Figure 69
The binary associates the local address with the socket created before using the bind API:

Figure 70
The listen function is used to place the socket in a listening state for incoming connections:

Figure 71
The malware was supposed to connect to the C2 server using the connect API, however,
due to the implementation mistake, this function call fails:

20/35

Figure 72
For the sake of the analysis, we’ve emulated an external connection from a remote IP to the
local host on port 8080. The getpeername API is utilized to extract the address of the peer to
which the socket is connected:

Figure 73
The inet_ntoa routine is the opposite of inet_addr and it’s used to convert an IP from a hex
form into an ASCII string (dotted-decimal format):

Figure 74
getsockname is utilized to retrieve the local name for the socket:

Figure 75
inet_ntoa is used again to convert the IP address from hex to dotted-decimal format, as
highlighted in figure 76:

Figure 76
The final buffer that will be exfiltrated contains some details about the network connection
(source and destination IPs/ports) and the string “listen”:

Figure 77

21/35

It’s important to mention that because of the bug, only this behavior is expected, however,
there are other execution flows as well. For example, if no connection is established, the
malware only copies the string “idle” in the buffer. If the connection to the C2 server is
successful, then the string “connect” would have been copied into the final buffer. Finally, if
the connection is successful and the process accepts another connection on port 8080, the
string “accept” is copied into the buffer as well.

Byte = 0x16 – create a named pipe and wait for connections

The file creates a new named pipe using the CreateNamedPipeA routine (0x40040003 =
FILE_FLAG_OVERLAPPED | WRITE_DAC | PIPE_ACCESS_DUPLEX, 0x6 =
PIPE_TYPE_MESSAGE | PIPE_READMODE_MESSAGE):

Figure 78
A new unnamed event object is created by the backdoor:

Figure 79
The binary enables the pipe to wait for connections from client processes, as displayed
below:

Figure 80
Whether the C2 server specifies the “off” parameter in the network traffic, the malware calls
the DisconnectNamedPipe API:

Figure 81
The buffer that will be exfiltrated is similar to the one presented in figure 66.

22/35

Byte = 0x20 – extract timestamps for a file mentioned by the C2 server

The FindFirstFileA routine is utilized to locate a file specified by the C2 server in the network
traffic:

Figure 82
The malicious process converts the file time to system time format using
FileTimeToSystemTime:

Figure 83
The GetTimeFormatA API is utilized to convert the time from above to a time string (0x800 =
LOCALE_SYSTEM_DEFAULT, 0x80000000 = LOCALE_NOUSEROVERRIDE):

Figure 84
The GetDateFormatA API is utilized to convert the date from above to a date string (0x800 =
LOCALE_SYSTEM_DEFAULT, 0x80000000 = LOCALE_NOUSEROVERRIDE):

Figure 85
The final buffer that will be exfiltrated contains the file name, file creation date and time, and
the length of the file content:

Figure 86

23/35

If any error occurs during an operation such as creating a file, opening a file, and so in all
studied cases, the malware formats the error message using FormatMessageA and copies it
to the final buffer (0x1000 = FORMAT_MESSAGE_FROM_SYSTEM, 0x2 =
ERROR_FILE_NOT_FOUND):

Figure 87
Byte = 0x21 – move a file to a new file

The response from the C2 server contains 2 file names. The process moves the first file to
the second one by calling the MoveFileA API:

Figure 88
The buffer that will be exfiltrated is similar to the one presented in figure 66.

Byte = 0x22 – copy a file to a new file

The response from the C2 server contains 2 file names. The malware copies the first file to
the second one by calling the CopyFileA API:

Figure 89
The buffer that will be exfiltrated is similar to the one presented in figure 66.

Byte = 0x23 – delete a file

The response from the C2 server contains a file name. The binary deletes the file using the
DeleteFileA function:

Figure 90
The buffer that will be exfiltrated is similar to the one presented in figure 66.

24/35

Byte = 0x24 – retrieve the current directory for the process

GetCurrentDirectoryA is used to extract the current directory for the process:

Figure 91
The final buffer that will be exfiltrated contains the path extracted above:

Figure 92

Byte = 0x25 – create a directory

The response from the C2 server contains a directory name. The backdoor creates the new
directory using the CreateDirectoryA routine:

Figure 93
The buffer that will be exfiltrated is similar to the one presented in figure 66.

Byte = 0x26 – delete a directory

The response from the C2 server contains a directory name. The binary deletes the directory
using the RemoveDirectoryA routine:

Figure 94
The buffer that will be exfiltrated is similar to the one presented in figure 66.

Byte = 0x27 – change the current directory for the process

The response from the C2 server contains a directory name. The process changes the
current directory for the process to this directory:

Figure 95
The buffer that will be exfiltrated is similar to the one presented in figure 66.

25/35

Byte = 0x28 – set the current directory for the process to the %TEMP% folder

GetTempPathA is utilized to retrieve the path of the %TEMP% directory:

Figure 96
The file changes the current directory for the process using the SetCurrentDirectoryA API:

Figure 97
Byte = 0x29 – retrieve the valid drives on the system and their type

The valid drives on the system are extracted by calling the GetLogicalDriveStringsA function:

Figure 98
The backdoor extracts the type of the drive using the GetDriveTypeA API, as displayed in
figure 99.

Figure 99
The final buffer that will be exfiltrated contains the drives name and a string that categorizes
their type:

Figure 100

The following strings are hard-coded and indicate the type of drives: unk
(DRIVE_UNKNOWN), nrt (DRIVE_NO_ROOT_DIR), rmv (DRIVE_REMOVABLE), fix
(DRIVE_FIXED), net (DRIVE_REMOTE), cdr (DRIVE_CDROM), ram (DRIVE_RAMDISK)
and und (most likely UNDEFINED).

Byte = 0x2A – retrieve the computer Uptime and encrypt the value

The malware calls the GetTickCount function and stores the result in a separate buffer:

Figure 101

26/35

The 4-byte value extracted above is encrypted using a custom algorithm:

Figure 102
The final buffer that will be exfiltrated contains the result of the above encryption:

Figure 103

Byte = 0x30 – retrieve the path of an executable that corresponds to a particular process ID

The response from the C2 server contains a string with a process ID. The atoi function is
used to convert the string to a number:

27/35

Figure 104
The malicious binary opens the local process object that corresponds to the process ID using
the OpenProcess routine (0x1F0FFF = PROCESS_ALL_ACCESS):

Figure 105
EnumProcessModules is utilized to enumerate the modules of the targeted process:

Figure 106
GetModuleFileNameExA is used to retrieve the path of the file that contains a specific
module. This is an interesting way to find out the path to the executable that corresponds to
the targeted process ID:

Figure 107
The final buffer that will be exfiltrated contains the address of the module from above and the
path to the executable:

Figure 108

Byte = 0x31 – kill a process

The response from the C2 server contains a string with a process ID. The backdoor opens
the local process object that corresponds to the process ID using the OpenProcess routine
(0x1= PROCESS_TERMINATE):

28/35

Figure 109
The binary kills the targeted process using TerminateProcess, as described in figure 110:

Figure 110
The final buffer that will be exfiltrated contains the string “term” (which probably refers to
terminate) and the process ID:

Figure 111

Byte = 0x32 – create a new process

The response from the C2 server contains a process name. The malware creates this
process by calling the CreateProcessA API:

Figure 112
The final buffer that will be exfiltrated contains the ID of the process created earlier:

Figure 113

Byte = 0x33 – create a new process in the security context of the credentials received from
the C2 server

The response from the C2 server contains the following data: user, password, Windows
domain, and process name. Two anonymous pipes are created using the CreatePipe API:

29/35

Figure 114

Figure 115
GetCurrentDirectoryW is utilized to retrieve the current directory for the process:

Figure 116
The binary creates a new process that runs in the context of the credentials extracted from
the network traffic via a CreateProcessWithLogonW function call:

Figure 117
The executable extracts a handle for each module in the process created above by calling
the EnumProcessModules routine:

Figure 118
There is a call to GetModuleFileNameExA that extracts the path of the file containing the
above module:

30/35

Figure 119
The buffer that will be exfiltrated is similar to the one presented in figure 108.

Byte = 0x34 (same execution flow as 0x33)

Byte = 0x40 – retrieve the current process ID, the path of the executable, the hostname, the
username, and the default locale

GetModuleFileNameA is utilized to extract the path of the executable of the current process:

Figure 120
The malware retrieves the NetBIOS name of the local computer and the user name by
calling the GetComputerNameA and GetUserNameA functions, respectively:

Figure 121

Figure 122
The current process ID is extracted using the GetCurrentProcessId routine:

Figure 123
GetLocaleInfoA is utilized to retrieve information about the default locale for the user or
process (0x400 = LOCALE_USER_DEFAULT):

Figure 124

31/35

The final buffer that will be exfiltrated contains the current process ID, the path of the
executable, the hostname, the username, the “AppID” value, the C2 server, the HTTP
method used during network communications, the pipe name mentioned in Case1 of Data
Exfiltration, and the user’s language (English – United States):

Figure 125

Byte = 0x41 –retrieve the current process ID, the path of the executable, the hostname, the
username, and the default locale

GetModuleFileNameA is utilized to extract the path of the executable of the current process:

Figure 126
The GetComputerNameA and GetUserNameA APIs are used to retrieve the hostname and
the username associated with the current thread:

Figure 127

Figure 128
GetCurrentProcessId is utilized to extract the ID of the current process:

Figure 129
The default locale for the user or process is extracted using GetLocaleInfoA (0x400 =
LOCALE_USER_DEFAULT):

32/35

Figure 130
The final buffer that will be exfiltrated contains the current process ID, the path of the
executable, the hostname, the username, and the user’s language (English – United States):

Figure 131

Byte = 0x48 – retrieve the hostname and username

The malware extracts the username and hostname as before:

Figure 132

Figure 133
The final buffer that will be exfiltrated contains the hostname and username, as highlighted in
figure 134:

Figure 134

Byte = 0x49 – exfiltrate the C2 domain name and port number

The final buffer that will be exfiltrated contains the C2 server and the port number:

Figure 135

Byte = 0x85 – close open handles

There is only a FindClose function call regarding this case. The buffer that will be exfiltrated
is similar to the one presented in figure 66.

Byte = 0x8B – close open handles

33/35

This is also a “cleaning” case because the backdoor calls the CloseHandle API a few times.
The buffer that will be exfiltrated is similar to the one presented in figure 66.

Byte = 0x98 calculate the MD5 hash of the empty string

The process computes the MD5 hash of the empty string and saves the result to the buffer
that will be exfiltrated:

Figure 136

Byte = 0xC4 – close open handles

No notable activity regarding this case. The buffer that will be exfiltrated is similar to the one
presented in figure 66.

Byte = 0xC7 – close open handles and unmap a mapped view of a file

The binary performs 2 function calls to CloseHandle and a call to UnmapViewOfFile. The
buffer that will be exfiltrated is similar to the one presented in figure 66.

Byte = 0xCA – close open handles

No notable activity regarding this case. The buffer that will be exfiltrated is similar to the one
presented in figure 66.

Byte = 0xE1 – resume a suspended thread and copy data from a pipe

The malicious process resumes a thread that was previously suspended using the
ResumeThread routine:

Figure 137
PeekNamedPipe is utilized to copy data from a named or anonymous pipe into a buffer
without removing it from the pipe:

Figure 138
Whether more data is available in the pipe, the malware reads it using the ReadFile API:

34/35

Figure 139
The buffer that will be exfiltrated contains the data received from the pipe:

Figure 140

Byte = 0xE2 – copy data from a pipe

The executable copies data from a named or anonymous pipe into a buffer via a
PeekNamedPipe function call:

Figure 141
The ReadFile function is utilized to read more data from the pipe if it’s available:

Figure 142
The buffer that will be exfiltrated contains the data received from the pipe:

Figure 143

Byte = 0xE3 – kill a process

The backdoor kills a specific process, whose handle is read from memory:

Figure 144
The buffer that will be exfiltrated is similar to the one presented in figure 66.

35/35

Byte = 0xFE – close open handles

The binary performs a function call to CloseHandle and closesocket. The buffer that will be
exfiltrated is similar to the one presented in figure 66.

Byte = 0xFF – copy a string that probably represents the exit of the program

The malware copies the string “Exiting…” to the final buffer that will be exfiltrated:

Figure 145

References

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

VirusTotal:
https://www.virustotal.com/gui/file/6057b19975818ff4487ee62d5341834c53ab80a507949a52
422ab37c7c46b7a1

Fakenet: https://github.com/fireeye/flare-fakenet-ng

MalwareBazaar:
https://bazaar.abuse.ch/sample/6057b19975818ff4487ee62d5341834c53ab80a507949a524
22ab37c7c46b7a1/

ESET: https://www.welivesecurity.com/wp-
content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf

Kaspersky: https://securelist.com/miniduke-is-back-nemesis-gemina-and-the-botgen-
studio/64107/

Cybersecurity Advisory:
https://media.defense.gov/2021/Apr/15/2002621240/-1/-1/0/CSA_SVR_TARGETS_US_ALLI
ES_UOO13234021.PDF/CSA_SVR_TARGETS_US_ALLIES_UOO13234021.PDF

INDICATORS OF COMPROMISE

C2 server: salesappliances[.]com

SHA256: 6057b19975818ff4487ee62d5341834c53ab80a507949a52422ab37c7c46b7a1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/47.0.2526.111 Safari/537.36 (prone to False Positives)

Named Pipe: \\pipe\DefPipe

https://docs.microsoft.com/en-us/windows/win32/api/
https://www.virustotal.com/gui/file/6057b19975818ff4487ee62d5341834c53ab80a507949a52422ab37c7c46b7a1
https://github.com/fireeye/flare-fakenet-ng
https://bazaar.abuse.ch/sample/6057b19975818ff4487ee62d5341834c53ab80a507949a52422ab37c7c46b7a1/
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf
https://securelist.com/miniduke-is-back-nemesis-gemina-and-the-botgen-studio/64107/
https://media.defense.gov/2021/Apr/15/2002621240/-1/-1/0/CSA_SVR_TARGETS_US_ALLIES_UOO13234021.PDF/CSA_SVR_TARGETS_US_ALLIES_UOO13234021.PDF

