
1/18

September 27, 2021

RedLine Infostealer
cyber-anubis.github.io/malware analysis/redline/

Nidal Fikri

Hatching Triage Malware Research Analyst. Ex-Trend Micro Intern.

16 minute read

RedLine in a Nutshell

https://cyber-anubis.github.io/malware%20analysis/redline/

2/18

RedLine is a newly emerging infostealer. An infostealer malware is designed to gather
information, and steal valuable assets from an infected system. The most common form of
infostealer is to gather login information, like usernames and passwords. RedLine was first being
noticed at 2020 via COVID-19 phishing emails, and has been active in 2021. RedLine is almost
everywhere, and has appeared variously as trojanized services, games, and cracks. RedLine is
used for extensive information stealing operations, like: credit card credentials, Crypto wallets,
sensitive files, etc. Furthermore, RedLine also can be used as malware loader or dropper for
extended malicious impact. For instance, it can be used to infect the victim with additional
malwares like ransomwares. The RedLine malware family has been distributed and sold mostly
via underground malware forums. Many samples of RedLine also appear with legit-looking digital
certificates. RedLine is considered as one of the most serious threats that are currently in the
wild, therefore it is a must to know how it works, how to detect it, and how to protect your
organization.

RedLine Infection Vector

RedLine is extremely versatile, and has been noted being delivered by numerous mechanisms. It
is used in multiple smaller campaigns by individuals who have purchased the malware from the
underground malware forums. Due to this, there are a wide range of known infection vectors.
Only few of them are stated below:

Trojanized as popular services: Telegram, Signal, Discord (i.e. legit-looking installers).
Email phishing campaigns.
Abusing Google Ads while hosting Trojanized or fake websites.
Social engineering campaigns to attack digital artists using Non-Fungible Tokens.
Downloaded by malware loaders.

Technical Summary

1. Configuration Extraction: RedLine comes with embedded configuration, in this variant,
the configuration is Base64 encoded plus an additional layer of XOR encryption with hard-
coded key. These configuration contains the C&C server and the malware Botnet ID , which
it will communicate with to exfiltrate gathered information, and also for further remote
commands.

2. C2 Communication: After extracting the C&C and before doing anything, RedLine will
check if there is a possibility to reach its C&C server. If there is an available connection,
RedLine will then try to obtain the malicious Scan Settings. These scan arguments contain
flags that will be used to determine which information to be stolen. Moreover, the obtained
scan arguments contain tuning parameters, to specify desired data assets. For instance,
search patterns to specify certain files to be exfiltrated, etc.

3/18

3. Host Profiling: RedLine will gather information about the infected host, in order to decide
further actions. Mostly relying on Windows Management Instrumentation (WMI), it harvests
and generates the following information: Hardware ID, Usernames, OS version, Installed
languages, Installed programs, Current running processes, Anti-malware products,
Graphics card info, Victim’s Location, IP address, etc. In addition to all these, RedLine
contains functions to exclude Blacklisted countries as well as Blocked IPs from infection.

4. Information Stealing: Here lies the bulk of its functionality. As being an information stealer,
based on the obtained scan arguments, RedLine can exfiltrates the following information:

Files: Any specified files in the following directories: ProgramData, Program Files,
Program Files (x86) .
Browsers: Login credentials, Cookies, Auto-fill fields used by websites, and Credit
card details.
Crypto Wallets: Credentials of: Armory, Exodus, Ethereum, Monero, Atomic,
BinanceChain, and a lot more.
VPN Clients: Credentials of the following VPN clients: NordVPN, ProtonVPN, and
OpenVPN.
Gaming Clients: It’s targeting the credentials of the famous Valve’s Steam gaming
platform.
Instant Messengers: Currently it’s targeting Telegram session data and Discord
tokens.
FTP Clients: Credentials of FileZilla FTP client.

5. Remote Execution: After successful data exfiltration, RedLine will try to obtain additional
remote commands to execute within the infected machine. Going beyond information
stealing, RedLine is able to perform the following remote actions:

Download additional files.
Download and execute PE files (i.e. additional malware like ransomware).
Open desired links (i.e. malicious websites).
Execute remote commands via CMD.exe .

Technical Analysis

First look & Unpacking

4/18

Figure(1): Results are at 2021-09-20 18:03:15 UTC. Different results may appear.

This sample comes -in disguise- as packed C/C++ file, which will be responsible to unpack and
expose the real RedLine malware. However, the initial packed file as you can see in the last
figure is flagged malicious by 20 security vendors according to VirusTotal. For simplicity sake, I’ve
decided to use UnpacMe to do the unpacking process. The final unpacked file is found to a .NET
application, which is the real RedLine malware that I will analyze in details. I’ve decided to focus
on RedLine data structures, to properly understand which & how data is being exfiltrated.

Configuration Extraction

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/virus_total.png
https://www.virustotal.com/gui/file/1d91ab82e01d7682deecbeef7b441f26e405c0053e0354e92fdb5cfe61b097b0/detection/f-1d91ab82e01d7682deecbeef7b441f26e405c0053e0354e92fdb5cfe61b097b0-1632160995
https://www.unpac.me/results/159ed23f-5cdf-4183-8131-d95e61932a9d#/

5/18

Figure(2): RedLine code entry point.

RedLine begins with hiding its UI from the infected user. It dynamically resolves
GetConsoleWindow() and ShowWindow() APIs do that. RedLine calls ShowWindow() with

the parameter SW_HIDE=0 to effectively hide its window.

Figure(3): The function used for decrypting the embedded configuration.

Then, it uses the Decrypt() function to extract the embedded encrypted configuration. For this
particular sample, the decrypted C&C is "188.124.36.242:25802" and the decrypted Botnet
ID is "paladin" . The Botent ID is being used to track the malware and to better identify the
infected machines.

C2 Communication

After successfully extracting the C&C IP address, RedLine will check if it can reach the C&C
server using the functions RequestConnection() and TryGetConnection() . If there is an
available connection, RedLine will then try to obtain the malicious Scan Settings using the
function TryGetArgs() . These settings simply represents the full arsenal of RedLine, and what
capabilities it possess. The available scan settings are below:

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/entrypoint.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/decrypt.png

6/18

Figure(4): For simplicity sake , this screenshot is taken using Sublime and not dnSpy in order to
show only the useful code.

These scan arguments contain flags that will be used to determine which information to be
stolen. Each flag is used in certain functions to decide whether to perform the scanning
functionality or not -I will show examples in a moment. Moreover, the obtained scan arguments
contain tuning parameters, to specify desired data assets. For instance, they contain search
patterns to specify files to be exfiltrated, paths for locating certain browsers, or a list of Blacklisted
countries to exclude from infection, etc. After getting the scanning arguments (settings), RedLine
proceeds to preform its main purpose, which is information stealing.

Information Stealing

Figure(5): The functions names & lots of code were obfuscated to make reverse engineering
harder.

RedLine contains many functions to collect and harvest almost every valuable asset in the
infected machine. Some of these functions are very simple, regarding the purpose and the
implementation. For instance, Enumerate_username() , Get_Malware_Path() ,
Enumerate_OS_Version() ,etc.

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/scan_args_class.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/part_sender_class.png

7/18

Yet, before proceeding to the scanning functionality once again, RedLine instantiates very
important data structures, which will be populated with the stolen assets and the gathered host
profile. Below are the two important classes ScanResult and ScanDetails :

Figure(6): The rest of the customized classes will be discussed in the coming sections.

For instance, Specified files by the scanning arguments will be populated into ScannedFile
class in order to be exfiltrated and so on. The scannedFile class is included in the bigger
ScanDetails class, which is also included in the bigger ScanResult class. It’s very important

to understand the hierarchy of these nested classes, to draw a map of how the precious data
assets are being organized and stolen from the infected machine.

Host Profiling

RedLine contains more than 20 functions to perform almost full sweeping of the infected
machine. Some of them are fairly simple, they just perform windows registry querying or they use
documented APIs. For instance, since Microsoft Edge is the default browser, the
Enumerate_Browsers() function searches the registry keys
HKEY_LOCAL_MACHINE\Software\Clients\StartMenuInternet and its WoW6432 twin to find

the installed browsers, in order to harvest their credentials later on. The
Enumerate_Installed_Software() function uses the registry key
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall to list every installed

software in the system. Also, RedLine uses the Take_Screenshots() functions to take live
screenshots of the infected system.

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/scan_results1.png

8/18

Figure(7): Concatinating the WMI query for the ManagementObjectSearcher class instance.

Moreover, the Enumerate_Security_Defenders() function uses the WMI to enumerate any
installed security solution. It allows it to get the installed Antivirus, AntiSpyware and Firewall (third
party) software using the root\SecurityCenter or the root\SecurityCenter2
namespaces.

Not to forget, the Enumerate_Running_Processess() function which also uses the
Win32_Process WMI class that represents a process on an operating system. It gets the

process name + PID + command line arguemtns in order to build a live full view of the infected
machine. I think the attacker uses these information to decide further malicious actions i.e.
certain exploits.

Figure(8): The if-statements control wether to stop the infection or not.

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/get_VS.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/gelocation.png

9/18

Lastly, one more interesting function is the Send() function which contains the above method. It
uses the following remote API https://api.ip.sb/geoip to gather very detailed geographical
information about the victim. The remote API returns XML data specifying many detailed
information:

{"organization":"XXXXXXXX","longitude":XXXXXXX,"city":"XXXXXX","timezone":"XXXXXX","isp":"

Exfiltrating Files

Figure(9): The contents of the file is being automatically read when the constructor is called with
the filename string parameter.

It’s important to know the inner structures of the ScannedFile class which is used to populate
the exfiltrated files. As you can see in the above screenshot, once a file is being instantiated,
nearly all of its important contents is stolen.

Figure(10): The function shows the concatination of the searching paths.

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/scanned_file_class.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/exfil_files.png

10/18

Based on the obtained scan arguments (settings) during the previous C2 communication, they
contain search patterns to specify desired files to be stolen. RedLine currently use the search
patterns to locate files in the following directories only: Program Files (X86)/ , Program
Files/ , and Program Data/ . The directory ProgramData/ is for user-agnostic data
generated during execution such as shared cache, shared databases, shared settings, shared
preferences, etc.

Figure(11): Once a ScannedFile instance is instantiated with a filename, all of the file contents is
read.

RedLine only needs to locate the specified files based on the search patterns then create a
ScannedFile instance of the filtered filename. Once instantiated with the filename, almost all of

the file contents is stolen because of the ScannedFile constructor code.

Harvesting Browsers

Figure(12): The collected data about the targeted browser.

Also, It’s very important to know the inner structures of the Browser class, which is used to
populate the harvested browser credentials. Once a browser is targeted, RedLine steals its
accounts credentials, credit card credentials, cookies, and auto-fill data. RedLine targets
Chromium based browsers as well as Gecko based browsers, which makes RedLine nearly
targets most used browsers.

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/exfil_files2.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/browser_class.png

11/18

Figure(13): Notice the passed scanning settings which were obtained by the C2 communication.

Figure(14): Populating the Browser class.

RedLine also uses more methods like DecryptChromium() in order to effectively harvest the
targeted credentials. It’s also being noticed that for Gecko based browsers, this sample only
steals the cookies unlike the targeted Chromium based browsers.

Stealing Crypto Wallets

A crypto wallet is an application used to both cold store and retrieve digital cryptocurrency assets.
RedLine of course targets these valuable assets because of the rise of people’s interest in
cryptocurrency during the past few years.

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/harvest_browser.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/harvest_browser2.png

12/18

Figure(15): The AllWallets class is used for generic crypto wallets.

RedLine comes with many classes targeting many crypto wallets like: Armory, Exodus,
Ethereum, Monero, Atomic, BinanceChain, Jaxx, Electrum, Guarda, etc. RedLine uses pre-
defined search patterns and scan arguments to populate the wallets into ScannedFile
instances. Each class in the previous figure is just used to initialize defined search patterns to be
passed to the regular Search() function which is used in files exfiltration.

Figure(16): Overriding the GetScanArgs function with new search patterns.

These search patterns specify the credentials files which is being used for the specific wallet
type. For every wallet class, it is used to override the GetScanArgs() function which is used
internally in the Search() function in order to filter for the appropriate wallet files. These filtered
files will be exfiltrated.

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/crypto1.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/crypto2.png

13/18

Harvesting Instant Messenger Clients

Instant Messenger (IM) clients like Discord and Telegram have seen a recent rise in popularity,
with Discord boasting over 100 million active users. For Telegram, RedLine looks used the
GetProcessesByName() function to get the ExecutablePath for Telegram running process.

Then, it looks for the folder tdata . This is where the Instant Messenger stores its session data,
including images and conversations:

Figure(17): The function is passed the Telegram process name.

It’s also used to override the GetScanArgs() function which is used internally in the Search()
function in order to filter for the targeted files.

For Discord, RedLine is stealing its tokens using the Discord.GetTokens() function. A Discord
token is a phrase of letters and numbers that acts as an authorization code to access Discord’s
servers. It effectively acts as an encryption of your username and password.

Snatching VPN Clients Credentials

With the rise in popularity in VPN services, RedLine doesn’t have any plans to miss this chance.
RedLine targets the VPN clients of the following services: NordVPN, OpenVPN, and ProtonVPN.
For NordVPN client, RedLine uses obfuscated strings to locate the targeted XML files which
contain the VPN credentials:

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/telegram1.png

14/18

Figure(18): This method of strings obfuscation is almost used everywhere in RedLine classes.

Then, it uses decrypting functions to decipher the wanted credentials:

Figure(19): The CryptoHelper class is used for various decryption and encryption operations
within RedLine.

Yet, for OpenVPN and ProtonVPN, RedLine uses the same old method of overriding the
GetScanArgs() function which is used internally in the Search() function in order to filter for

the targeted files. Then, it exfiltrates the filtered files as ScannedFile instances which contains
the VPN credentials.

Harvesting Gaming Clients

Steam is a video game digital distribution service by Valve. By 2019, the service had over 34,000
games with over 95 million monthly active users. Steam is regarded as one of the best gaming
platforms in the industry. Steam has an in-built store with a lot of ‘Steam accounts’ having various
other services and banking details related to it. RedLine attempts to go after the Steam Sentry
File which is used to store credentials:

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/nord1.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/nord2.png
https://en.wikipedia.org/wiki/Valve_Corporation

15/18

Figure(20): RedLine overrides the GetScanArgs() function with defined search patterns. Then,
exfiltrate the targeted files.

A VDF file is a data file format used by Valve’s Source game engine. It contains various kinds of
game metadata, including data for resources, installation scripts, configuration scripts, and
visualization elements.

Stealing FTP Credentials

A File Transfer Protocol client (FTP client) is a software utility that establishes a connection
between a host computer and a remote server, typically an FTP server. An FTP client provides
the dual-direction transfer of data and files between two computers over a TCP network or an
Internet connection.

Figure(21): RedLine checks the existance of two different paths to locate the targeted credentials.

RedLine targets the free, open-source FileZilla application. RedLine uses the
ScanCredentials() function to extract the required credentials and to populate them in
Account class which will contain the URL + username + password.

Remote Execution

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/steam1.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/ftp1.png

16/18

RedLine extends its functionality beyond information stealing. Here, RedLine takes the role of a
malware loader. A malware loader is the software which drops the actual malicious content on
the system, then executes the first stage of the attack. Hence, RedLine is capable of delivering
some additional serious threats to the infected machine, like ransomwares for example. After
successfully performing the information stealing operations, RedLine uses the TryGetTasks()
function to obtain a list of UpdateTask class, which contains the required arguments to
successfully perform remote execution actions:

Figure(22): The availabe remote actions aka update tasks.

Once a connection with its C&C server has been established, RedLine can remotely perform the
operations described in the above figure. Below are the inner details of the
DownloadAndExecuteUpdate class which is used -as the name suggests- to download a PE file

and executes it in the infected machine:

Figure(23): The passed argument consists of the malicious URL + the filename.

RedLine can be used effectively as malware loader or dropper for further wanted malicious
activities. Moreover, it can be used to open desired links for various malicious or non-malicious
purposes.

Conclusion

https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/task1.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Redline/task2.png

17/18

RedLine is regarded as a true security threat to any machine. The capabilities of being able to
steal almost every valuable asset, and being able to load additional serious malwares or exploits
are regarded most fatal. This threat has been sold as individual packages with several pricing
options, or as Malware-as-a-Service (MaaS) on a subscription-based pricing package. With the
rise of Maas underground forums, RedLine threats will not fade away in the very near future.
Therefore, it is a must to know how it works, how to detect it, and how to protect your
organization.

IoCs

No. Description Value

1 Initial
packed file

1d91ab82e01d7682deecbeef7b441f26e405c0053e0354e92fdb5cfe61b097b0

2 Unpacked
RedLine

e9905446c858326e8f0fe12f6df777542180608381f1ccae4bda9a8356b04abc

3 RedLine
C&C server

188.124.36.242:25802

YARA Rule

18/18

rule redline : infostealer
{

meta:
 description = "This is a noob rule for detecting unpacked RedLine"
 author = "Nidal Fikri @cyber_anubis"

strings:
 $mz = {4D 5A} //PE File

 $s1 = "IRemoteEndpoint"
 $s2 = "ITaskProcessor"

 $s3 = "ScannedFile"
 $s4 = "ScanningArgs"
 $s5 = "ScanResult"

 $s6 = "DownloadAndExecuteUpdate"
 $s7 = "OpenUpdate"
 $s8 = "CommandLineUpdate"

 $s9 = "TryCompleteTask"
 $s10 = "TryGetTasks"
 $s11 = "TryInitBrowsers"
 $s12 = "InstalledBrowsers"
 $s13 = "TryInitInstalledBrowsers"
 $s14 = "TryInitInstalledSoftwares"
 $s15 = "TryGetConnection"

condition:
($mz at 0) and (10 of ($s*))

}

References

https://blogs.blackberry.com/en/2021/07/threat-thursday-redline-infostealer

https://blogs.blackberry.com/en/2021/07/threat-thursday-redline-infostealer

