
1/22

September 27, 2021

FoggyWeb: Targeted NOBELIUM malware leads to persistent
backdoor

microsoft.com/security/blog/2021/09/27/foggyweb-targeted-nobelium-malware-leads-to-persistent-backdoor/

Microsoft continues to work with partners and customers to track and expand our knowledge of the threat actor
we refer to as NOBELIUM, the actor behind the SUNBURST backdoor, TEARDROP malware, and related
components. As we stated before, we suspect that NOBELIUM can draw from significant operational resources
often showcased in their campaigns, including custom-built malware and tools. In March 2021, we profiled
NOBELIUM’s GoldMax, GoldFinder, and Sibot malware, which it uses for layered persistence. We then followed
that up with another post in May, when we analyzed the actor’s early-stage toolset comprising EnvyScout,
BoomBox, NativeZone, and VaporRage.

This blog is another in-depth analysis of newly detected NOBELIUM malware: a post-exploitation backdoor that
Microsoft Threat Intelligence Center (MSTIC) refers to as FoggyWeb. As mentioned in previous blogs,
NOBELIUM employs multiple tactics to pursue credential theft with the objective of gaining admin-level access to
Active Directory Federation Services (AD FS) servers. Once NOBELIUM obtains credentials and successfully
compromises a server, the actor relies on that access to maintain persistence and deepen its infiltration using
sophisticated malware and tools. NOBELIUM uses FoggyWeb to remotely exfiltrate the configuration database
of compromised AD FS servers, decrypted token-signing certificate, and token-decryption certificate, as well as
to download and execute additional components. Use of FoggyWeb has been observed in the wild as early as
April 2021.

Microsoft has notified all customers observed being targeted or compromised by this activity. If you believe your
organization has been compromised, we recommend that you

Audit your on-premises and cloud infrastructure, including configuration, per-user and per-app settings,
forwarding rules, and other changes the actor might have made to maintain their access
Remove user and app access, review configurations for each, and re-issue new, strong credentials
following documented industry best practices.

https://www.microsoft.com/security/blog/2021/09/27/foggyweb-targeted-nobelium-malware-leads-to-persistent-backdoor/
https://www.microsoft.com/security/blog/2021/01/20/deep-dive-into-the-solorigate-second-stage-activation-from-sunburst-to-teardrop-and-raindrop/
https://www.microsoft.com/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
https://www.microsoft.com/security/blog/2021/05/28/breaking-down-nobeliums-latest-early-stage-toolset/
https://docs.microsoft.com/windows-server/identity/active-directory-federation-services
https://docs.microsoft.com/windows-server/identity/ad-fs/design/token-signing-certificates
https://docs.microsoft.com/windows-server/identity/ad-fs/design/certificate-requirements-for-federation-servers

2/22

Use a hardware security module (HSM) as described in securing AD FS servers to prevent the exfiltration
of secrets by FoggyWeb.

Microsoft security products have implemented detections and protections against this malware. Indicators of
compromise (IOCs), mitigation guidance, detection details, and hunting queries for Azure Sentinel and Microsoft
365 Defender customers are provided at the end of this analysis and in the product portals. Active Directory
Federation Services (AD FS) servers run on-premises and customers can also follow detailed guidance on
securing AD FS servers against attacks.

FoggyWeb: Backdoor targeting AD FS

FoggyWeb is a passive and highly targeted backdoor capable of remotely exfiltrating sensitive information from a
compromised AD FS server. It can also receive additional malicious components from a command-and-control
(C2) server and execute them on the compromised server.

After compromising an AD FS server, NOBELIUM was observed dropping the following two files on the system
(administrative privileges are required to write these files to the folders listed below):

%WinDir%\ADFS\version.dll
%WinDir%\SystemResources\Windows.Data.TimeZones\pris\Windows.Data.TimeZones.zh-PH.pri

FoggyWeb is stored in the encrypted file Windows.Data.TimeZones.zh-PH.pri, while the malicious file version.dll
can be described as its loader. The AD FS service executable Microsoft.IdentityServer.ServiceHost.exe loads
the said DLL file via the DLL search order hijacking technique that involves the core Common Language
Runtime (CLR) DLL files (described in detail in the FoggyWeb loader section). This loader is responsible for
loading the encrypted FoggyWeb backdoor file and utilizing a custom Lightweight Encryption Algorithm (LEA)
routine to decrypt the backdoor in memory.

After de-obfuscating the backdoor, the loader proceeds to load FoggyWeb in the execution context of the AD FS
application. The loader, an unmanaged application, leverages the CLR hosting interfaces and APIs to load the
backdoor, a managed DLL, in the same Application Domain within which the legitimate AD FS managed code is
executed. This grants the backdoor access to the AD FS codebase and resources, including the AD FS
configuration database (as it inherits the AD FS service account permissions required to access the configuration
database).

https://docs.microsoft.com/windows-server/identity/ad-fs/deployment/best-practices-securing-ad-fs#hardware-security-module-hsm
https://docs.microsoft.com/windows-server/identity/ad-fs/deployment/best-practices-securing-ad-fs
https://docs.microsoft.com/en-us/windows-server/identity/active-directory-federation-services
https://docs.microsoft.com/windows-server/identity/ad-fs/deployment/best-practices-securing-ad-fs
https://attack.mitre.org/techniques/T1574/001/

3/22

When loaded, the FoggyWeb backdoor (originally named Microsoft.IdentityServer.WebExtension.dll by its
developer) functions as a passive and persistent backdoor that allows abuse of the Security Assertion Markup
Language (SAML) token. The backdoor configures HTTP listeners for actor-defined URIs that mimic the
structure of the legitimate URIs used by the target’s AD FS deployment. The custom listeners passively monitor
all incoming HTTP GET and POST requests sent to the AD FS server from the intranet/internet and intercept
HTTP requests that match the custom URI patterns defined by the actor. This version of FoggyWeb configures
listeners for the following hardcoded URI patterns (which might vary per target):

HTTP GET URI pattern:
/adfs/portal/images/theme/light01/profile.webp
/adfs/portal/images/theme/light01/background.webp
/adfs/portal/images/theme/light01/logo.webp

HTTP POST URI pattern:
/adfs/services/trust/2005/samlmixed/upload

Each HTTP GET/POST URI pattern above corresponds to a C2 command:

When the AD FS server receives an HTTP GET request containing the URI pattern
/adfs/portal/images/theme/light01/profile.webp, the backdoor retrieves the token signing certificate of the
compromised AD FS server and then obfuscates and returns the certificate to the issuer of the request.
Similarly, when the AD FS server receives an HTTP GET request containing the URI pattern
/adfs/portal/images/theme/light01/background.webp, the backdoor retrieves the token decryption
certificate of the compromised AD FS server and then obfuscates and returns the certificate to the issuer
of the request.
When the AD FS server receives an HTTP GET request containing the URI pattern
/adfs/portal/images/theme/light01/logo.webp, the backdoor retrieves the AD FS configuration data of the
compromised server, obfuscates the data, and returns the obfuscated data to the issuer of the request.
When the AD FS server receives an HTTP POST request containing the URI pattern
/adfs/services/trust/2005/samlmixed/upload, the backdoor treats the obfuscated and compressed POST
data as either .NET assembly or source code. If assembly, the backdoor executes the assembly in the
execution context of the AD FS process. If source code, the backdoor dynamically compiles the source
code and proceeds to execute the resulting memory-resident assembly in the execution context of the AD
FS process.

The diagram below illustrates the methodology used by the actor to communicate with the FoggyWeb backdoor
located on a compromised internet-facing AD FS server.

4/22

Since FoggyWeb runs in the context of the main AD FS process, it inherits the AD FS service account
permissions required to access the AD FS configuration database. This contrasts with tools such as ADFSDump
that must be executed under the user context of the AD FS service account. Also, because FoggyWeb is loaded
into the same application domain as the AD FS managed code, it gains programmatical access to the legitimate
AD FS classes, methods, properties, fields, objects, and components that are subsequently leveraged by
FoggyWeb to facilitate its malicious operations. For example, this allows FoggyWeb to gain access to the AD FS
configuration data without connecting to the WID named pipe or manually running SQL queries to retrieve
configuration information (for example, to obtain the EncryptedPfx blob from the configuration data). FoggyWeb
is also AD FS version-agnostic; it does not need to keep track of legacy versus modern configuration table
names and schemas, named pipe names, and other version-dependent properties of AD FS.

FoggyWeb loader

The file version.dll is a malicious loader responsible for loading an encrypted backdoor file from the file system,
decrypting the backdoor file, and loading it in memory. This malicious DLL, which shares a name with a
legitimate Windows DLL located in the %WinDir%\System32\ folder, is meant to be placed in the main AD FS
folder %WinDir%\ADFS\, where the AD FS service executable Microsoft.IdentityServer.ServiceHost.exe is
located (for reasons described later in this section).

When the AD FS service (adfssrv) is started, the service executable Microsoft.IdentityServer.ServiceHost.exe
gets executed. As a .NET-based managed application, Microsoft.IdentityServer.ServiceHost.exe imports an
unmanaged Windows DLL named mscoree.dll.

The file mscoree.dll dynamically loads another unmanaged Windows/CLR DLL named mscoreei.dll. As shown
below, mscoreei.dll has a delay load import (Delay Import) named version.dll.

5/22

NOBELIUM, with existing administrative permissions, was observed to drop a malicious loader named version.dll
in the %WinDir%\ADFS\ folder where the AD FS service executable Microsoft.IdentityServer.ServiceHost.exe is
located. Once the system or the AD FS service is restarted, Microsoft.IdentityServer.ServiceHost.exe loads
mscoree.dll, which in turn loads mscoreei.dll. As mentioned above, mscoreei.dll has a delay load import named
version.dll. Once loaded, instead of loading the legitimate version.dll from the %WinDir%\System32\ folder
mscoreei.dll loads the malicious version.dll planted by the attacker in %WinDir%\ADFS\ folder (referred to as
DLL search order hijacking), as shown in the call stack below.

The malicious loader version.dll behaves as a proxy for all legitimate version.dll export function calls. As shown
below, it exports the same 17 function names as the legitimate version of version.dll.

https://attack.mitre.org/techniques/T1574/001/

6/22

The export functions of the malicious version.dll are all short stubs that call a single trampoline function labeled
TrampolineFunction, as seen in the screenshot below.

Below is a pseudocode for the trampoline function.

This trampoline function is responsible for the following:

Calling a function (labeled as LoadDecryptExecuteBackdoor() by the analyst) to load a backdoor file from
the file system, and then decrypting and executing the file in memory
Transferring execution to the initially called target function from the legitimate version of version.dll.

The trampoline function preserves the value of the arguments/registers intended for the function from the
legitimate version of version.dll by saving the value of certain CPU registers. It first pushes them onto the stack
before calling the LoadDecryptExecuteBackdoor() function above and then restoring them before transferring
execution to the function from the legitimate version of version.dll.

7/22

When called, LoadDecryptExecuteBackdoor() attempts to create a Windows event named {2783c149-77a7-
5e51-0d83-ac0566daff96} to ensure that only one copy of the loader is actively running on the system. In a new
thread, it then checks if the following file is present (hardcoded path string):

C:\Windows\SystemResources\Windows.Data.TimeZones\pris\Windows.Data.TimeZones.zh-PH.pri

Windows.Data.TimeZones.zh-PH.pri is an encrypted backdoor file that is placed in the folder above. MSTIC
refers to this backdoor file as FoggyWeb, and our analysis is in the next section.

Microsoft.IdentityServer.ServiceHost.exe in and of itself is an unmanaged Windows executable that is generated
when the high-level AD FS managed code is compiled. When executed, the unmanaged code inside
Microsoft.IdentityServer.ServiceHost.exe leverages Common Language Runtime (CLR) to run the managed AD
FS code within a virtual runtime environment. This virtual runtime environment is comprised of one or more
application domains, which provide a unit of isolation for the runtime environment and allow different applications
to run inside separate containers within a process. The managed AD FS code is executed within an application
domain inside the virtual runtime environment.

The FoggyWeb backdoor (also a managed DLL) is intended to run alongside the legitimate AD FS code (that is,
within the same application domain). This means that for the FoggyWeb loader to load the backdoor alongside
the AD FS code, it needs to gain access to the same application domain that the AD FS code is executed within.
Since the FoggyWeb loader version.dll is an unmanaged application, it cannot directly access the virtual runtime
environment that the managed AD FS code is executed within. The loader overcomes this limitation and loads
the backdoor alongside the AD FS code by leveraging the CLR hosting interfaces and APIs to access the virtual
runtime environment within which the AD FS code is executed.

The loader performs the following high-level actions:

Enumerate all CLRs loaded in the AD FS process Microsoft.IdentityServer.ServiceHost.exe
For each CLR, enumerate all running application domains and perform the following actions for each
domain:

Read the contents of the following encrypted FoggyWeb backdoor file into memory:
C:\Windows\SystemResources\Windows.Data.TimeZones\pris\Windows.Data.TimeZones.zh-PH.pri
Decrypt the encrypted FoggyWeb backdoor file using the Lightweight Encryption Algorithm (LEA).
The LEA-128 key schedule uses the following hardcoded master key to generate the round keys:

8/22

After decrypting each 16-byte cipher block, the loader uses the following XOR key to decode each individual
decrypted/plaintext block:

This is equivalent to first LEA decrypting the entire file and then XOR decoding the decrypted data (instead of
decrypting and XOR decoding each individual 16-byte block).

Create a Safe Array and copy the decrypted FoggyWeb backdoor bytes to the array. It then calls the
Load() function for the current application domain to load the FoggyWeb DLL into the application
domain. After the FoggyWeb DLL is loaded into the current application domain, the loader invokes
the following method from the DLL: Microsoft.IdentityServer.WebExtension.WebHost.

At this point in the execution cycle, the FoggyWeb DLL is loaded into one or more application domains where the
legitimate AD FS code is running. This means the backdoor code runs alongside the AD FS code with the same
access and permissions as the AD FS application. Because the backdoor is loaded in the same application
domain as the AD FS code, it gains programmatical access to the legitimate classes, methods, properties, fields,
objects, and components used by various AD FS modules to carry out their legitimate functionality. Such access
allows the FoggyWeb backdoor to directly interact with the AD FS codebase (that is, not an external disk-
resident tool) and selectively invoke native AD FS methods needed to facilitate its malicious operations.

FoggyWeb backdoor

This malicious memory-resident DLL (originally named Microsoft.IdentityServer.WebExtension.dll by its
developer) functions as a backdoor targeting AD FS. It is loaded by the main AD FS service process
Microsoft.IdentityServer.ServiceHost.exe through a malicious loader component.

When loaded, the backdoor starts an HTTP listener that listens for HTTP GET and POST requests containing
the following URI patterns:

HTTP GET URI pattern: /adfs/portal/images/theme/light01/
HTTP POST URI pattern: /adfs/services/trust/2005/samlmixed/upload

As shown below, the URI patterns are hardcoded in the backdoor and mimic the structure of the legitimate URIs
used by the target’s AD FS deployment.

Once the backdoor receives an HTTP request that contains one of the URI patterns above, the listener proceeds
to handle the request using either an HTTP GET or HTTP POST callback/handler method (ProcessGetRequest()
and ProcessGetRequest(), respectively).

9/22

HTTP GET handler

The incoming HTTP GET requests that contain the URI pattern /adfs/portal/images/theme/light01/ are handled
by backdoor’s ProcessGetRequest() method.

If an incoming HTTP GET request is issued for a file/resource with the file extension of .webp, the
ProcessGetRequest() method proceeds to handle the request. Otherwise, the request is ignored by the
backdoor. Also, if the requested file name matches one of the three hardcoded names below, the backdoor treats
the request as a C2 command issued by the attacker.

The following URL patterns are treated as C2 commands:

/adfs/portal/images/theme/light01/profile.webp
/adfs/portal/images/theme/light01/background.webp
/adfs/portal/images/theme/light01/logo.webp

The first two C2 commands, profile.webp and background.webp (UrlGetFileNames[0] and UrlGetFileNames[1] in
the screenshot above), are handled by calling the backdoor’s Service.GetCertificate() method.

10/22

As the name suggests, this method is responsible for retrieving an AD FS certificate (either the token- signing or
the token encryption certificate, depending on the value of the certificateType parameter passed to the method)
from the AD FS service configuration database.

Analyst note: Refer to the Appendix for an in-depth analysis of the Service.GetCertificate() method and how it
obtains and decrypts either the token signing or encryption certificate.

As shown in the screenshot above, when the C2 command profile.webp (UrlGetFileNames[0]) is issued to the
backdoor (by issuing an HTTP GET request for the URI /adfs/portal/images/theme/light01/profile.webp), the
backdoor retrieves the token-signing certificate of the compromised AD FS server. Similarly, when the C2
command background.webp (UrlGetFileNames[1]) is issued to the backdoor (by issuing an HTTP GET request
for the URI /adfs/portal/images/theme/light01/background.webp), the backdoor retrieves the token encryption
certificate of the compromised AD FS server.

The third C2 command, logo.webp (UrlGetFileNames[2]), is triggered by sending an HTTP GET request to the
following URI: /adfs/portal/images/theme/light01/logo.webp. The C2 command is handled by calling the
backdoor’s GetInfo() method.

The GetInfo() method is responsible for dumping the AD FS service configuration data of the compromised
server.

As shown above, the AD FS service configuration data is obtained via the ServiceSettingsData property, which
retrieves the data from the AD FS service configuration database, Windows Internal Database (WID).

Before returning the output of the C2 commands (that is, the token-signing certificate, the token encryption
certificate, or the AD FS service configuration data) to the C2 in an HTTP 200 response, the backdoor first
obfuscates the output by calling its method named GetWebpImage().

11/22

The GetWebpImage() method is in charge of masquerading the output of the C2 commands as a legitimate
WebP file (by adding appropriate RIFF/WebP file header magic/fields) and encoding the resulting WebP file.

GetWebpImage() uses the following helper methods to create and encode the fake WebP file that contains the
C2 command output:

GetWebpImage() first invokes the Webp.GetFrame() method, which is responsible for compressing the
output of the C2 command and copying the compressed version to a new array (0 padded to a multiple of
32 bytes). The length of the compressed data is added as the first four bytes of the new array.

To compress the data, GetFrame() invokes the Common.Compress() method, which is used to compress the
data by leveraging the C# GZipStream compression class.

For demonstration purposes, assume the C2 command yields the following data (a 256-byte pseudo-randomly
generated byte array).

12/22

Given the data above (that is, sample C2 command output), GetFrame() returns the following byte array.

Next, GetWebpImage() invokes the Webp.GetWebpHeader() method, passing in the size of the byte array
returned by GetFrame() in the step above. GetWebpHeader() is responsible for creating and returning an
array containing custom RIFF WebP file magic/header bytes.

The array variable above contains the following 32-byte hardcoded RIFF/WebP header bytes.

13/22

If the size of the array passed to GetWebpHeader() (returned by GetFrame()) exceeds 8,192 bytes, the bytes at
index 26 and 28 of the header bytes (initially set to 0x00) are replaced with 0x80. Otherwise, the bytes at index
26 and 28 are replaced with 0x40, as shown below.

GetWebpHeader() then returns the custom RIFF/WebP header above to GetWebpImage().

Next, GetWebpImage() creates a new array by appending the custom RIFF/WebP header bytes returned
by GetWebpHeader() to the array returned by GetFrame() (the array containing the compressed version of
the C2 command output).

GetWebpImage() calls the Common.ProtectData() method of the backdoor to encode the portion of the new
array that contains the compressed bytes (that is, it does not encode the custom RIFF/WebP header). As the
second argument, GetWebpImage() passes the offset of the first compressed byte to ProtectData() (as shown in
the table above, 0x20 or 32 is the offset of the first compressed byte in this case). ProtectData() uses a dynamic
XOR key and a custom XOR methodology to XOR encode the compressed data.

Initially, the 12-byte hardcoded XOR key array contains the following (seed) bytes.

As shown in the screenshot above, each byte of compressed data is XOR’d with a byte from the XOR key array.
The first byte of the compressed data (0x17) is XOR’d with the XOR key byte located at offset 8 of the key array
(0x77).

14/22

After XOR’ing the first byte of the compressed data with the XOR key byte located at offset 8 of the key array,
the XOR key byte itself gets overwritten with a new value.

For example, the XOR key byte located at offset 8 of the XOR key array (0x77) gets overwritten with 0xEE via
the following operations.

The second byte of the compressed data (0x01) is XOR’d with the XOR key byte located at offset 9 of the key
array (33 % 12 = 9) and so on until the key rolls to the first byte of the XOR array (as mentioned above, the XOR
key bytes get overwritten after each encoding operation). Below is the XOR encoded version of the sample
compressed array.

After the steps outlined above, GetWebpImage() returns the following sample data to the method that invokes it
to obfuscate and conceal the output of each C2 command (ProcessGetRequest()).

As previously mentioned, ProcessGetRequest() returns the fake RIFF/WebP file generated above (containing
stolen token-signing certificate, token encryption certificate, or the AD FS service configuration data) to the C2 in
an HTTP 200 response.

If the backdoor cannot execute a C2 command successfully, it returns an HTTP 404 response to the C2 instead.

HTTP POST handler

15/22

Incoming HTTP POST requests that match the URI pattern /adfs/services/trust/2005/samlmixed/upload are
handled by the ProcessPostRequest() method.

This method ensures that the ContentType value of an incoming HTTP POST request ends with “xml” (case-
insensitive), and the HTTP POST data contains two XML elements named X509Certificate and SignatureValue
(for example, a blob that starts with the string “<X509Certificate>” and ends with the string “</X509Certificate>”).

If the XML data contains the two elements, the backdoor performs the following actions:

Decode the values of the SignatureValue and X509Certificate elements by first decoding the values using
Base64 and then calling the Common.UprotectData() method on each decoded value.

The UprotectData() method treats the first two bytes of the Base64 decoded value as a two-byte XOR key. It
invokes the Common.ProtectData() method (covered in the previous section) on the rest of the data (that is, third
byte on) and then uses the two-byte XOR key to XOR decode the data returned by Common.ProtectData(). In

16/22

other words, UprotectData() leverages Common.ProtectData() to remove the first layer of XOR encoding and
then another XOR routine to remove the second layer of XOR encoding applied to the data.

Invoke the Service.ExecuteAssembly() method to handle the decoded SignatureValue and X509Certificate
values. As shown below, the decoded X509Certificate value is the first GZip decompressed/inflated by
calling the Common.Decompress() method.

In a new thread, Service.ExecuteAssembly() calls Service.ExecuteAssemblyRoutine() method to handle the
data.

ExecuteAssemblyRoutine() checks if the decoded X509Certificate value starts with “MZ” (or the bytes 0x4D
0x5A, the hexadecimal representation of the decimal numbers 77 and 90, as seen in the screenshot
below).

17/22

If the decoded X509Certificate value starts with “MZ,” the backdoor treats the decoded data as a .NET-
based assembly/payload and proceeds to call its Service.ExecuteBinary() method to load and execute the
DLL payload in memory. After loading the DLL in memory, ExecuteBinary() proceeds to invoke a specific
method from the loaded DLL. The method name and parameters needed to invoke the method are
supplied to the backdoor within the decoded SignatureValue data.

If the decoded X509Certificate value does not start with MZ, the backdoor treats the decoded X509Certificate
value as source code for a C#-based payload and calls its Service.ExecuteSource() method to dynamically
compile and execute the payload in memory.

After handling the HTTP POST request containing the XML elements X509Certificate and SignatureValue, the
backdoor responds to the request with an HTTP 204 response code. If the HTTP POST does not have the
elements mentioned above, the backdoor responds to the request with an HTTP 404 response code.

Appendix: Obtaining and decrypting AD FS tokens

As the name suggests, the Service.GetCertificate() method is responsible for retrieving an AD FS certificate
(either the token- signing or the token encryption certificate, depending on the value of the certificateType
parameter passed to the method) from the AD FS service configuration database.

The method performs the following actions to retrieve the desired certificate:

18/22

Invoke another one of its methods named GetServiceSettingsDataProvider() to create an instance of type
Microsoft.IdentityServer.PolicyModel.Configuration.ServiceSettingsDataProvider from the already loaded
assembly Microsoft.IdentityServer.

Invoke the GetServiceSettings() member/method of the above ServiceSettingsDataProvider instance to
obtain the AD FS service configuration settings.

Obtain the value of the AD FS service settings (from the SecurityTokenService property), extract the value
of the EncryptedPfx blob from the service settings, and decode the blob using Base64.

Invoke another method named GetAssemblyByName() to enumerate all loaded assemblies by name and
locate the already loaded assembly Microsoft.IdentityServer.Service. This method retrieves the value of
two fields named _state and _certificateProtector from an object of type
Microsoft.IdentityServer.Service.Configuration.AdministrationServiceState (from the
Microsoft.IdentityServer.Service assembly).

The AdministrationServiceState class/object contains configuration information necessary for the execution and
handling of client requests. The field _state is used to maintain the current state of the
AdministrationServiceState class/object (screenshot from Microsoft.IdentityServer.Service.dll).

The AdministrationServiceState object (stored in the _state field) contains another field named
_certificateProtector.

19/22

The field _certificateProtector stores an instance of the Data Protector class DkmDataProtector for Distributed
Key Management (DKM). The DkmDataProtector class implements a method named Unprotect(), which
ultimately calls the Unprotect() method of DKM/IDKM (screenshot from Microsoft.IdentityServer.dll).

The DKM Unprotect() method inherits a method named Unprotect() from Microsoft.IdentityServer.Dkm.DKMBase
(screenshot from Microsoft.IdentityServer.Dkm.dll).

The Unprotect() method from Microsoft.IdentityServer.Dkm.DKMBase (shown above) provides the functionality
to decrypt the encrypted certificate (a PKCS12 object) stored in the EncryptedPfx blob.

Armed with the knowledge about the availability of the Unprotect() method accessible via the
_certificateProtector field, the backdoor invokes the Unprotect() method to decrypt the encrypted certificate
stored in the EncryptedPfx blob of the desired certificate type (either the AD FS token signing or encryption
certificate).

A variant of the technique described in this Appendix was publicly presented by Douglas Bienstock and Austin
Baker at the TROOPERS conference in 2019 (I am AD FS and so can you: Attacking Active Directory Federated
Services). However, the method used by FoggyWeb differs from the publicly presented method, in that
FoggyWeb leverages the _state and _certificateProtector fields from the AdministrationServiceState class/object
to facilitate access to the Data Protector class DkmDataProtector (used to gain access to and invoke the
Unprotect() method).

Indicators of compromise (IOCs)

https://troopers.de/troopers19/agenda/fpxwmn/

20/22

Type Threat
Name

Threat
Type

Indicator

MD5 FoggyWeb Loader 5d5a1b4fafaf0451151d552d8eeb73ec

SHA-
1

FoggyWeb Loader c896ece073dd01191cbc1d462bc2f47161828a83

SHA-
256

FoggyWeb Loader 231b5517b583de102cde59630c3bf938155d17037162f663874e4662af2481b1

MD5 FoggyWeb Backdoor
(encrypted)

9ff9401315d0f7258a9fcde0cfdef02b

SHA-
1

FoggyWeb Backdoor
(encrypted)

4597431f26424cb814c917168fa8d74d01ab7cd1

SHA-
256

FoggyWeb Backdoor
(encrypted)

da0be762bb785085d36aec80ef1697e25fb15414514768b3bcaf798dd9c9b169

MD5 FoggyWeb Backdoor
(decrypted)

e9671d294ce41fe6dbb9637dc0157a88

SHA-
1

FoggyWeb Backdoor
(decrypted)

85cfeccbb48fd9f498d24711c66e458e0a80cc90

SHA-
256

FoggyWeb Backdoor
(decrypted)

568392bd815de9b677788addfc4fa4b0a5847464b9208d2093a8623bbecd81e6

Mitigations

Customers should review their AD FS Server configuration and implement changes to secure these systems
from attacks:

Best Practices for securing AD FS and Web Application Proxy

We strongly recommend for organizations to harden and secure AD FS deployments through the following best
practices:

Ensure only Active Directory Admins and AD FS Admins have admin rights to the AD FS system.
Reduce local Administrators’ group membership on all AD FS servers.
Require all cloud admins to use multi-factor authentication (MFA).
Ensure minimal administration capability via agents.
Limit on-network access via host firewall.
Ensure AD FS Admins use Admin Workstations to protect their credentials.
Place AD FS server computer objects in a top-level OU that doesn’t also host other servers.
Ensure that all GPOs that apply to AD FS servers apply only to them and not to any other servers. This
limits potential privilege escalation through GPO modification.
Ensure that the installed certificates are protected against theft. Don’t store these on a share on the
network and set a calendar reminder to ensure they get renewed before expiring (expired certificate breaks
federation auth). Additionally, we recommend protecting signing keys or certificates in a hardware security
module (HSM) attached to AD FS.
Set logging to the highest level and send the AD FS (and security) logs to a SIEM to correlate with AD
authentication as well as Azure AD (or similar).
Remove unnecessary protocols and Windows features.

https://docs.microsoft.com/windows-server/identity/ad-fs/deployment/best-practices-securing-ad-fs
https://docs.microsoft.com/windows-server/identity/ad-fs/deployment/best-practices-securing-ad-fs#hardware-security-module-hsm

21/22

Use a long (>25 characters) and complex password for the AD FS service account. We recommend using
a Group Managed Service Account (gMSA) as the service account, as it removes the need for managing
the service account password over time by managing it automatically.
Update to the latest AD FS version for security and logging improvements (as always, test first).
When federated with Azure AD follow the best practices for securing and monitoring the AD FS trust with
Azure AD.

Detections

Protecting AD FS servers is key to mitigating NOBELIUM attacks. Detecting and blocking malware, attacker
activity, and other malicious artifacts on AD FS servers can break critical steps in known NOBELIUM attack
chains. Microsoft Defender Antivirus detects the new NOBELIUM components discussed in this blog as the
following malware:

Loader: Trojan:Win32/FoggyWeb.A!dha
Backdoor: Trojan:MSIL/FoggyWeb.A!dha

Microsoft 365 Defender

Endpoint detection and response (EDR) capabilities in Microsoft Defender for Endpoint detect malicious behavior
related to this malware which is surfaced as alerts with the following titles:

A suspicious DLL was loaded by the ADFS service
Suspicious service launched
Suspicious file dropped

Azure AD Identity Protection

This kind of attack can also be detected in the cloud using Azure AD Identity Protection. It is recommended that
you monitor the Azure AD Identity Protection Risk detections report for the “Token Issuer Anomaly” detection.
This detection looks for anomalies in the SAML token presented to the Azure AD tenant.

https://docs.microsoft.com/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-install-prerequisites#harden-your-azure-ad-connect-server
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-monitor-federation-changes
https://docs.microsoft.com/azure/active-directory/identity-protection/overview-identity-protection
https://docs.microsoft.com/azure/active-directory/identity-protection/concept-identity-protection-risks#risk-types-and-detection

22/22

Advanced hunting queries

Microsoft Defender for Endpoint

To locate related activity, run the following advanced hunting queries in Microsoft 365 Defender:

DeviceImageLoadEvents
| where FolderPath has @"C:\Windows\ADFS"

 | where FileName has @"version.dll"

Azure Sentinel

Azure Sentinel customers can use the following detection queries to look for this activity:

Detection query: https://github.com/Azure/Azure-
Sentinel/tree/master/Detections/MultipleDataSources/Nobelium_FoggyWeb.yaml

Indicator file: https://github.com/Azure/Azure-Sentinel/tree/master/Sample%20Data/Feeds/FoggyWebIOC.csv

https://github.com/Azure/Azure-Sentinel/blob/master/Detections/MultipleDataSources/Nobelium_FoggyWeb.yaml
https://github.com/Azure/Azure-Sentinel/tree/master/Sample%20Data/Feeds/FoggyWebIOC.csv

