
1/15

Ryan Cornateanu September 27, 2021

Deobfuscating PowerShell Malware Droppers
ryancor.medium.com/deobfuscating-powershell-malware-droppers-b6c34499e41d

Ryan Cornateanu

Sep 26, 2021

·

12 min read

I recently saw a video of Ahmed S Kasmani dissecting a ComRAT PowerShell script to
obtain the main malware that it drops onto the victim’s computer. If you haven’t seen the
video yet, I highly encourage you to watch it. This paper is going to go into similar detail, as
well as my own approach to deobfuscating PowerShell scripts to get to the main payload. To
follow along, you can use this hash to download this script from VirusTotal:

134919151466c9292bdcb7c24c32c841a5183d880072b0ad5e8b3a3a830afef8

So what is ‘ComRAT’ besides a city and municipality in Moldova and the capital of the
autonomous region of Gagauzia? It was started by a Turla hacker group, one of Russia’s
most advanced state-sponsored hacking groups that began in 2007. Although the latest
version of ComRAT v4 was created in 2017, it is still being used a bit today.

ComRAT Timeline from ZDnet[.]com

https://ryancor.medium.com/deobfuscating-powershell-malware-droppers-b6c34499e41d
https://ryancor.medium.com/?source=post_page-----b6c34499e41d--------------------------------
https://ryancor.medium.com/?source=post_page-----b6c34499e41d--------------------------------
https://www.youtube.com/watch?v=K8n1xv1KxNI
https://www.youtube.com/channel/UC0vsNncAvJlPh2XGUi5s33Q

2/15

Turla hacking group’s modus operandi was to target government and military facilities. Turla
has since been dubbed by other names such as Snake, Krypton, and Venomous Bear.

Attack Chain

Mechanism of Attack
In this paper, we will be going over how the dropper operates, and the logic on how the
malware gets to stage 2, which is the DLL payload. This cyber-kill chain graph will be a work
in progress on my end as I did not fully reverse engineer much after the DLL was dropped.
Maybe I will turn this into a series, where I go over every part of the chain, but for now let’s
focus on the first three components in the graphic above.

Diving into the PowerShell

For this lab exercise, we are going to use Visual Studio Code on a Windows VM since they
have a great linter for PowerShell scripts. Let’s open up the file, and dive in.

3/15

Original PowerShell opened in VSC
Three major things hit me at first… 1) this is a lot of base64, 2) the PowerShell is not
formatted out correctly, and 3) the variable names are completely randomized. First let’s take
care of how many lines of code the base64 is taking up. We can easily fix this by going to
View->Toggle Word Wrap and uncheck it by simply clicking on it. Now, we want this to be

properly formatted, this can be fixed by hitting SHIFT+ALT+F .

PowerShell reformatted
This looks a lot cleaner! Time to break down the two functions inside this PowerShell and
start renaming function / variable names. Let’s start with the first one. It looks like some sort
of string generator.

4/15

Obfuscation of Function & Variable Names

function TVM730egf([string[]]$GP50afa) { $UC33gfa = ((1..(Get-Random -Min 2 -Max
4) | % { [Char](Get-Random -Min 0x41 -Max 0x5B) }) -join ''); $EQ33abh =
((1..(Get-Random -Min 2 -Max 4) | % { [Char](Get-Random -Min 0x30 -Max 0x3A)
}) -join ''); $OFK689fa = ((1..(Get-Random -Min 2 -Max 4) | % { [Char]
(Get-Random -Min 0x61 -Max 0x6B) }) -join ''); $TTG32aa = $UC33gfa + $EQ33abh +
$OFK689fa; if ($GP50afa -contains $TTG32aa) { $TTG32aa = Get-RandomVar
$GP50afa; } $GP50afa += $TTG32aa; return $TTG32aa, $GP50afa;}

The first three lines look to be generating only capital letters ranging from 2 to 4 bytes. The
second line does exactly the same thing as line 1 but only generates numbers. The third
generator generates a 2 to 4 byte lowercase string. Let’s rename a few variables and see
how it looks.

function rand_string_generator([string[]]$param1_str) { $rand_upper_str = ((1..
(Get-Random -Min 2 -Max 4) ... $rand_num_str = ((1..(Get-Random -Min 2 -Max 4)
... $rand_lower_str = ((1..(Get-Random -Min 2 -Max 4) ... $rand_str_gen =
$rand_upper_str + $rand_num_str +
$rand_lower_str; if ($param1_str -contains $rand_str_gen) {
$rand_str_gen = Get-RandomVar $param1_str; } $param1_str += $rand_str_gen;
return $rand_str_gen, $param1_str;}

Now we can copy this function, and paste it into a PowerShell command line, and see what
the output will look like.

PS C:\Users\ryancor> rand_string_generator("test")FN36ddtestFN36dd

Easy enough, this looks like it feeds in a string, and does a check to make sure the random
string it generates does not match the string parameter. If they are a match, it will get a
random byte from the parameter string and add it to the random string. Looks like this
function gets referenced about 10 times throughout the program.

$rand_string_array = @();[string]$PS061hh, [string[]]$rand_string_array =
rand_string_generator $rand_string_array;[string]$RPW45dij,
[string[]]$rand_string_array = rand_string_generator
$rand_string_array;[string]$RIZ505ia, [string[]]$rand_string_array =
rand_string_generator $rand_string_array;...PS C:\Users\ryancor>
$rand_string_arrayXLA320efeYUP59cgCB456fgbBW13chiNQG095ggNP120cehYG27gfOXN26bdVE440ihi

If we look at the array and the single random strings returned, they never get referenced
again in the program. With that being said, if we pay attention to the how the function and
variable names are specifically labeled, we find a massive similarity to the output above. The
string generator takes in a string and concatenates an array of randomized bytes that start
with two to three uppercase letters, followed by two to three integers, then lastly, two to three
lowercase letters. This entire script follows this XXX000xxx naming convention. So it’s safe
to say this is how they obfuscated the entire dropper as I assume the author’s copy of this
PowerShell script has debug symbols that helped the malware writers QA their work before
shipping this out to their targets/victims.

5/15

Executing Embedded C# Code

Time to move on over to function PAZ488af which referenced the random string
generator, but we are going to start from the top as it has important information about what’s
going to be dropped, while also renaming some variables to better understand what is
happening here. Starting with the first 10 lines, there is already so much going on:

$task_sched = New-Object -
ComObject('Schedule.Service');$task_sched.connect('localhost');$objFoldr =
$task_sched.GetFolder($param2);$null_task = $task_sched.NewTask($null);
[string]$filename = [System.IO.Path]::GetTempFileName();Remove-Item -Path $filename -
Force;[string]$ps1_name = [System.IO.Path]::GetFileName($filename);$ascii = New-
Object System.Text.ASCIIEncoding;$base64_decoded_bytes =
[Convert]::FromBase64String("cHVibGljIHN0YXRpY....");$ps_decoded_class =
$ascii.GetString($base64_decoded_bytes, 0,
$base64_decoded_bytes.Length);try { Add-Type $ps_decoded_class -erroraction
'silentlycontinue' } catch { return; }

The first four lines are dedicated to testing the presence of a folder, and scheduling a task at
Microsoft\Windows\Customer Experience Improvement Program , we don’t know what

significance this has yet but maybe we will find out later. If you’re wondering how I found out
what $param2 was in $task_sched.GetFolder($param2); was, all I had to do was trace
out how this function was being called, and the second to last line of this PowerShell dropper
shows the string arguments that were used.

String Arguments Used
The next 3 lines will grab the PowerShell script name and remove the path from it until it is
just a filename string. Now, the last few lines of the script above are decoding a large base64
string, so we can use cyberchef to see this is.

https://gchq.github.io/CyberChef

6/15

Looks like some interesting embedded C#! So what I like to do since that classname will
most likely be referenced in our script, is copy and paste this into our dropper file. Yes, you
can execute C# functions from PowerShell, and that’s what the try,except statement is
attempting to do. As shown in Microsoft’s documentation, the Add-Type cmdlet lets you
define a Microsoft .NET Core class in your PowerShell session. You can then instantiate
objects, by using the New-Object cmdlet, and use the objects just as you would use any
.NET Core object.

So let’s rename the classname RZP645be to decryption_class , and the function within
XD014ic to decrypt , since this looks to be a simple multi-key byte XOR decryption. You’ll

notice as we are replacing this in the script, we can see it is being called a couple of times
throughout the PowerShell script.

$TEX262hh = 'H4sIAAAAAAAEAIy5xw7ETJIeeB9g3qEhCJAEzgy9KQ...'$HT29hh =
[Convert]::FromBase64String($TEX262hh);$MO67cc =
'H4sIAAAAAAAEAIy5xw7ETJIeeB9g3qEhCJAEzgy9KQ...'$PVU468aa =
[Convert]::FromBase64String($MO67cc);$GS459ea = "$((1..(Get-Random -Min 8 -Max 10) |
% {[Char](Get-Random -Min 0x3A -Max 0x5B)}) -join '') $((1..(Get-
Random -Min 5 -Max 8) | % {[Char](Get-Random -Min 0x30 -Max 0x3A)}) -join '')
$((1..(Get-Random -Min 8 -Max 10) | %{[Char](Get-Random -Min 0x61 -Max
0x7B)}) -join '')";[byte[]]$JQ587aa = [decryption_class]::decrypt($HT29hh,
$ascii.GetBytes($GS459ea));[byte[]]$QIG418ba = [decryption_class]::decrypt($PVU468aa,
$ascii.GetBytes($GS459ea));$AT85ced = [Convert]::ToBase64String($JQ587aa);$ARO88iab =
[Convert]::ToBase64String($QIG418ba);

7/15

Let’s break this down, we have two extremely large base64 strings, and so we will start with
those using cyberchef. Once you use the base64 decoder, you’ll notice both of these
encoded strings have very similar headers, so it has to mean something:

...........¹Ç.ÄL..x.`Þ¡!...Î.½)

The problem is, we have no idea what type of file format this is. So we can use cyberchef’s
Detect File Type plugin to help us identify.

Detecting file format of unknown bytes

8/15

Gunzip the bytes
It looks like we have more PowerShell code being decompressed. So we can start renaming
variables to make this script look cleaner.

PowerShell Script Dropper Base64 Encoded Strings
We are not sure what it’s decrypting, given the fact that these are compressed bytes, and not
encrypted bytes from what we were able to prove with cyberchef, but maybe it will become
more clear as we move along. At this point, I took the decompressed code, and moved it to a
separate file that I named dropper_part_2.ps1 , and reformatted it.

9/15

New IOC dropper script
Let’s go back to our main dropper script because we have to take a look at this function
([decryption_class]::decrypt) a little closer. Once the script decrypts the decoded
bytes, it assigns certain pointer values.

[byte[]]$decrypted_ps_bytes_1 =
[decryption_class]::decrypt($ps_decoded_1,
$ascii.GetBytes($rand_key));[byte[]]$decrypted_ps_bytes_2 =
[decryption_class]::decrypt($ps_decoded_2,
$ascii.GetBytes($rand_key));$base64_encoded_decrypted_bytes_1 =
[Convert]::ToBase64String($decrypted_ps_bytes_1);$base64_encoded_decrypted_bytes_2 =
[Convert]::ToBase64String($decrypted_ps_bytes_2);...$sqmclient_reg_path =
"HKLM:\SOFTWARE\Microsoft\SQMClient\Windows";if ([System.IntPtr]::Size -eq 4) {
$HQO388ea = $base64_encoded_decrypted_bytes_1;}else { $HQO388ea =
$base64_encoded_decrypted_bytes_2;}

We have two ways of figuring out what is the purpose of the decryption, we can simply figure
out what [System.IntPtr]::Size does, or we can actually debug this. The lazy way is to
look at the Microsoft docs. It states that the size of a pointer or handle in this process is
measured in bytes. The value of this property is 4 in a 32-bit process, and 8 in a 64-bit
process. You can define the process type by setting the /platform switch when you
compile your code with the C# and Visual Basic compilers. Now we know why there were
basically two identical PowerShell scripts being decoded, one will most likely drop a 64-bit
DLL or EXE, and the other script will drop a 32-bit one.

Writing & Persistence Mechanisms

As you can see below, after renaming some variables, we can see the main purpose of the
rest of the script is to create schedulers, triggers, and executions with the wsqmcons binary,
which is a software component of Microsoft. Windows SQM consolidator is tasked with

10/15

collecting and sending usage data to Microsoft. Wsqmcons is a file that runs the Windows
SQM consolidator, and is usually deemed as a safe file for your PC. In this case, it is used
being used for malicious purposes. The modification of the scheduled task shown below
indicates the primary purpose of this task modification is to decode and execute a
PowerShell script contained within the registry key
HKLM:\SOFTWARE\Microsoft\SQMClient\Windows = WSqmCons and the script will inject

the payload into the WsqmCons registry key.

Malware disguising itself as a safe process
Knowing this now, I feel comfortable to skip the rest of the main script we were looking at. So
we can focus our attention back to the script that we just decoded (the script that we dubbed
dropper_part_2.ps1).

PE Dropper

Execution of C# Script
Analyzing the first few lines, it looks fairly similar to what we saw before in the main script. I’ll
take this base64 string and decode it in cyberchef. Once you do this you’ll notice another
blob of C# code.

11/15

Under the hood of the C# Script
When we highlight some of the public classes and functions, we can see where they are
being highlighted in the PowerShell script. VO01bag , which has the functions XOP22aj &
RJ85ige , looks like a simple gunzip compression and decompression, so we can rename

those accordingly. The class WQS70fb and function YQ498hff looks like it takes in an
input of bytes and writes them out to a file. I’ve renamed them as well since we can see them
being used throughout the file. Now if we go back to the decompression function from the
decoded C# with our renamed variables, it feels like we are getting closer to our PE file.

public static byte[] decompress_array(byte[] arrayToDecompress){ using (MemoryStream
inStream = newMemoryStream(arrayToDecompress)) using (GZipStream bigStream = new
GZipStream(inStream,
CompressionMode.Decompress)) using (MemoryStream bigStreamOut = new MemoryStream())
{ WriteClass.write_to_file(bigStream, bigStreamOut); return
bigStreamOut.ToArray(); }}

Our WriteClass does not get called in the PowerShell script, but it does get called in C#
code within the DecompressionClass , which tells us that after certain bytes are
decompressed, it gets written to a file because if we reference this decompress_array
function, we can see it being used as such:

$FV18hi = [DecompressionClass]::decompress_array($TEM52cbe);....$PEBytes =
[DecompressionClass]::decompress_array($PEbytes);

Looks like we found out where our PE bytes are being decompressed, written, and dropped.

12/15

PE Dropper
The remainder of the script before the PE bytes get written to memory, is the use of a 3DES
decryption algorithm with an initialization vector of FVADRCORAOSKBHPX to encrypt/decrypt
the contents of another PowerShell script with a password and salt. It will then be stored in a
Windows registry path as seen in the screenshot above. In turn, it will make analysis of the
script impossible without the correct password and salt combination. This command (IEX)
on the last line will execute the dropped PE file onto the victim machine. You can find the
open-source PowerSploit script here.

For the moment we have all been waiting for, let’s take the base64 string I labeled as
$pe_encoded_bytes and throw it into cyber chef to decode and decompress.

https://github.com/PowerShellMafia/PowerSploit/blob/master/ScriptModification/Out-EncryptedScript.ps1

13/15

Decoded & Decompressed PE
If we click the file save icon, we can download this binary. Now we can check the IOC on it,
and see if anything pops up in VirusTotal.

➜ file payload.binpayload.dll: PE32 executable (DLL) (GUI) Intel 80386, for MS
Windows➜ openssl sha1 payload.dllSHA1(payload.dll)=
d117643019d665a29ce8a7b812268fb8d3e5aadb

Looks like we are dealing with a dynamic link library file, which we will not be able to reverse
engineer for this paper (but we’ll still want to see this payload through eventually).

14/15

VirusTotal Hit
Looks like we hit the jackpot, and I’m sure the DLL will show all the inner workings of how
ComRAT works.

Disassembly of DLL
Taking a small peak under the hood of this DLL, we can see a lot of the imported API calls
have to do with cryptography and process injections, which could mean there are other
stages to this malware, but as you can see to the right of the picture above, there is a
function I reverse engineered already that is responsible for decrypting and resolving 100’s
of APIs from Kernel32.

IOCs

Main PowerShell Script

134919151466c9292bdcb7c24c32c841a5183d880072b0ad5e8b3a3a830afef

https://www.virustotal.com/gui/file/b93484683014aca8e909c9b5648d8f0ac21a45d0c193f6ca40f0b01d2464c1c4/detection

15/15

PE Dropper PowerShell Script

187bf95439da038c1bc291619507ff5e426d250709fa5e3eda7fda99e1c9854c

Dropped DLL Backdoor

b93484683014aca8e909c9b5648d8f0ac21a45d0c193f6ca40f0b01d2464c1c4

Conclusion

This PowerShell script that we went through installs a secondary PowerShell script, to which
we analyzed and figured that it decodes and loads either a 32-bit DLL or a 64-bit DLL that
will most likely be used as its communication module. It was stated by CISA that the FBI has
had high confidence that this malware is a Russian state sponsored APT (Advanced
Persistent Threat) group that uses this malicious virus to exploit victim’s networks. With that
being said, here are all the PowerShell scripts I deobfuscated for this research paper.
Dropper Part I & Dropper Part II.

Thank you for following along! I hope you enjoyed it as much as I did. If you have any
questions on this article or where to find the challenge, please DM me at my Instagram:
@hackersclub or Twitter: @ringoware

Happy Hunting :)

References

https://gist.github.com/ryancor/96c127914807ac46d237c3dde5c74ef9
https://gist.github.com/ryancor/39a73746bb783d1101ab9444d7a08f58

