
1/8

September 24, 2021

Hunting the LockBit Gang's Exfiltration Infrastructures
yoroi.company/research/hunting-the-lockbit-gangs-exfiltration-infrastructures/

09/24/2021

Introduction

Nowadays ransomware operators have consolidated the double extortion practice by mastering data exfiltration techniques. From time
to time, we observed many threat actors approach the data theft in diverse ways, some prefeed to rely on legit services and tools such
as RClone, FTP sites, and some through VPN channels, but others also with customized tools.

Also, during the last months the LockBit gang (TH-276) decided to develop and evolve a custom tool specialized in data exfiltration and
used as a peculiar element to distinguish their criminal brand. In fact, the StealBit 2.0 tool is part of the toolset the gang offers to their crooks to
overcome the difficulties of massive data theft: an out-of-the-box tool ready to be used against the target company next to the LockBit 2.0
encryption tool.

From an intelligence perspective, understand the mechanisms and the infrastructure behind this tool is particularly valuable, especialy to early
detect animminent ransomware impact. For this reason, Yoroi Malware ZLAB dissected a recent version of StealBit, tracking down the
infrastructures abused by the infamous tool, configured there by the cyber criminals (Stealbit-Configuration-Decryptor available).

Technical Analysis

The initial sample we have chosen to start our investigation has the following static information:

Hash 3407f26b3d69f1dfce76782fee1256274cf92f744c65aa1ff2d3eaaaf61b0b1d

Threat StealBit

Brief Description Exfiltration utility adopted by lockbit gang during their cyber intrusions

Filesize 52.7 KB

Ssdeep 768:FXPkQ2Csnwhxvfhko88yb6cvXbhb7vJawOuArU1o/xnmGP:YLqvZko9ybpvrtvJa/uArU+5nNP

Table 1: Static information about the sample

Analyzing the malicious component, we immediately noticed the lack of metadata in the PE fields. In fact, we obtained few data:
the bitness, entry point, the compiler timestamp, and not much more than the DOS header. Something huge is missing.

https://yoroi.company/research/hunting-the-lockbit-gangs-exfiltration-infrastructures/
https://github.com/CERT-Yoroi-Malware-ZLab/Stealbit-Configuration-Decryptor

2/8

Figure 1: Static information about the sample

In fact, the "imphash" section is not available in the sample. Surprisingly, this is not an error of the tool. The import table of the
sample is completely void, empty, no Windows API listed. At this point, we decided to deep inside the code to understand the internals of the
sample.

Anti-Debug Techniques

Anyway, the lack of system API does not prevent malware developers from protecting their code. So, one of
the first things the StealBit sample does just after the entry point is implementing a low-level anti-analysis technique.

Figure 2: Simple Anti-Debug Routine

It is an anti-debug technique documented in many open source resources. The technique is based on the checking
of specific values in Process Environment Block (PEB), a data structure in the Windows
NT operating systems used to contain information about the execution of a specific process. One of the flags contained inside the
PEB is "NtGlobalFlags”: this value is accessed through the following opcodes.

mov eax, fs:[30h] ; Load the PEB data structure

mov eax, eax+68h ; Load the value of the “NtGlobalFlags” flag

Code snippet 1

If the value in the indicated flag is 0x70, it means that the process is debugged. In this case, the malware loops at the same instruction,
otherwise it goes with its malicious activities.

The Runtime Loading of APIs and Libraries

As previously stated, the malware has an empty import address table, so it needs to load the required libraries to perform its malicious
activities. Even when no IAT entry is present the operating system loads the three basic DLLs:

Figure 3: Automatic import of the base Windows libraries

To load all the rest of the system API needed to exfiltrate data, StealBit hides the native DLL names to import into stack
strings. This means the name of the DLL to load is pushed into the running thread stack a char at a time, and then popped
out to reconstruct the desired string, just like in the following piece of code:

https://anti-debug.checkpoint.com/techniques/debug-flags.html#manual-checks-ntglobalflag

3/8

Figure 4: Example of stack-strings loading

In this case, the reconstructed string is "ws2_32.dll", a native library for internet communication. Instead, the stack-strings of the other libraries
loaded by StealBit are the following:

Figure 5: DLLs to load

Stack string obfuscation was extensively used across the sample, so we automatized the extraction process, and
the results are reported in Appendix 1.

Data Exfiltration

When the Command and Control correctly responds to the malware, it starts its exfiltration routine, performed by using the HTTP
method PUT and the implemented method is designed to be as fast as possible:

Figure 6: Piece of the Exfiltration C2 Communication

So, we decided to deepen the communication routine and we isolated all the fields of the request. The principal fields of the request are the
following:

PUT: HTTP PUT Method

4/8

File Hash: indicates the file to put on the server
HTTP classic headers
DAV2 Constant Header: The body of the request starts with the DAV2 key
The Config ID: (which we’ll explain in the next paragraph)
The complete file name of the exfiltrated file
The content of the file in cleartext

An example of the construction of the malicious request is the following:

Figure 7: HTTP PUT request construction

Despite what LockBit gang advertises, their StealBit does not actually compress the file extracted by the system. In fact, the malware
selectively uploads all the files reachable on the target machine except system files, registry hives, scripts and files matching specific
extensions such as .cmd, .msi, .ocx, .cpl , .hta, .lnk, .exe , .dll, etc. .

The full list of file exclusions is available on Appendix 1.

Configuration Extraction

One of the most interesting points of malware was the static configuration protection mechanism in place. During the analysis we isolated the
piece of code containing the routine adopted by the malicious developers to decrypt the StealBit configuration.

Figure 8: Configuration decoding routine

5/8

This piece of code contains a neat algorithm to decrypt the configuration of the StealBit sample. It reads a small 8-byte key to decode the byte-
chuck starting from the offset 0x40E250 (see above). The loop ends when all 124 bytes are decoded. In the following picture we can see the
before and the after of the configuration:

Figure 9: Before and after of the decoding process

The configuration chunk is composed of two parts: the first one is a 5-characters ID, probably identifying the victim or the current
campaign, and the other chunk is a series of IP addresses to be contacted by the exfiltration tool. These remote IPs are the addresses of the
infrastructure used by the threat actor to exfiltrate the data from the targeted companies.

Hunting the Samples

At this point, we created a Yara rule (see "Yara Rules" section) matching the configuration decrypting routine and automated the decoding of
the static configurations of the StealBit samples in the wild using the Stealbit-Configuration-Decryptor. At the time of writing, we
were spotted these samples:

Retrieved Hashes

2f18e61e3d9189f6ff5cc95252396bebaefe0d76596cc51cf0ade6a5156c6f66

4db7eeed852946803c16373a085c1bb5f79b60d2122d6fc9a2703714cdd9dac0

07a3dcb8d9b062fb480692fa33d12da05c21f544492cbaf9207956ac647ba9ae

3407f26b3d69f1dfce76782fee1256274cf92f744c65aa1ff2d3eaaaf61b0b1d

bd14872dd9fdead89fc074fdc5832caea4ceac02983ec41f814278130b3f943e

ced3de74196b2fac18e010d2e575335e2af320110d3fdaff09a33165edb43ca2

107d9fce05ff8296d0417a5a830d180cd46aa120ced8360df3ebfd15cb550636

Table 2: Retrieved hashes from Yara Hunting

These samples have a perfect code similarity with the original one and the only difference is properly the configuration chuck.

Figure 10: Binary Diff analysis of two samples

The result of the static configuration extraction from this first in-the-wild StealBit sample set is reported in the following table.

Hash Compilation Time ID IPs

https://github.com/CERT-Yoroi-Malware-ZLab/Stealbit-Configuration-Decryptor

6/8

07a3dcb8d9b062fb480692fa33d12da05c21f544492cbaf9207956ac647ba9ae 2021-07-12
04:58:17

84AFC 93[.]190[.]143[[.]101 139[.]60[.]1

107d9fce05ff8296d0417a5a830d180cd46aa120ced8360df3ebfd15cb550636 2021-07-31
07:09:59

J29EV 93[.]190[.]139[.]223 168[.]100[.

2f18e61e3d9189f6ff5cc95252396bebaefe0d76596cc51cf0ade6a5156c6f66 2021-07-31
07:09:59

D26VN 174[.]138[.]62[.]35 93[.]190[.]14

3407f26b3d69f1dfce76782fee1256274cf92f744c65aa1ff2d3eaaaf61b0b1d 2021-07-31
07:09:59

LCPA0 88[.]80[.]147[.]102 168[.]100[.]1

4db7eeed852946803c16373a085c1bb5f79b60d2122d6fc9a2703714cdd9dac0 2021-07-12
04:58:17

4ATGY 139[.]60[.]160[.]200 193[.]38[.]2

bd14872dd9fdead89fc074fdc5832caea4ceac02983ec41f814278130b3f943e 2021-07-31
07:09:59

D26VN 174[.]138[.]62[.]35 93[.]190[.]14

ced3de74196b2fac18e010d2e575335e2af320110d3fdaff09a33165edb43ca2 2021-07-12
04:58:17

84AFC 93[.]190[.]143[.]101 139[.]60[.]1

Table 3: Automatic configuration extraction from the hunted samples

The Exfiltration Infrastructure

Once extracted the remote IP address hard-coded into the static configurations of
the StealBit samples, we analyzed the exfiltration infrastructure from a threat intelligence point of view, tracking down past malicious activities
related to those IPs. We noticed that some of them have been used in the past operation for other malicious purposes such as the
distribution of mobile malware, or phishing attempts to banks etc., by actors unrelated to the LockBit gang and ransomware practice in
general.

The connection between these different operations is still unclear and weak, in fact, different criminal
organizations could have been accidentally chosen the same providers due to their potential lack of collaboration with western
authorities, but also - at least in the 168.100.11[.72 case - the same remote address was used to conduct phishing operations in Italy and
ransomware data exfiltration in adjacent same time spans.

IP Count Whois
(NetName and Country)

Findings

139.60.160[.200 7 HOSTKEY-USA US

168.100.11[.72 2 BLNETWORKS-01 US Phishing to Italian banks between 12 – 24 Aug 2021

174.138.62[.35 4 DIGITALOCEAN-174-138-0-0 US

185.215.113[.39 1 SC-ELITETEAM-20201113 SC Distrubution of mobile banking malware in Feb21

193.162.143[.218 5 FirstByte RU

193.38.235[.234 7 VDSINA-NET RU RDP with machine name WIN-R84DEUE96RB and before WIN-
5ODCFIGQRP3 in Aug21

45.227.255[.190 3 Okpay Investment Company PA-
OICO-LACNIC

MongoDB scanning and exploitation in APR20

88.80.147[.102 1 BelCloud-net BG

93.190.143[.101 4 WORLDSTREAM NL Reported as Spam vector in 2020

93.190.139[.223 1 WORLDSTREAM NL

Table 4: Information about the infrastructure

Conclusion

Data exfiltration tools are getting more popular in the cyber-criminal ecosystem. LockBit gang leveraged this kind of tools to distinguish from
other ransomware operators and attract malicious affiliates in their criminal business, and today LockBit is one of the most active
and violent threat groups operating the double extortion practice. Securing company data is nowadays a huge challenge and the proliferation
of massive data theft tools like StealBit are an emergent threat.

Tracking down the adversary infrastructure is a relevant effort, by we believe it is necessary to help the security community to fight and pursue
such criminals and protect the Yoroi's customers from data extortion threats.

7/8

Indicators of Compromise

Hash:
07a3dcb8d9b062fb480692fa33d12da05c21f544492cbaf9207956ac647ba9ae
2f18e61e3d9189f6ff5cc95252396bebaefe0d76596cc51cf0ade6a5156c6f66
3407f26b3d69f1dfce76782fee1256274cf92f744c65aa1ff2d3eaaaf61b0b1d
4db7eeed852946803c16373a085c1bb5f79b60d2122d6fc9a2703714cdd9dac0
bd14872dd9fdead89fc074fdc5832caea4ceac02983ec41f814278130b3f943e
ced3de74196b2fac18e010d2e575335e2af320110d3fdaff09a33165edb43ca2
107d9fce05ff8296d0417a5a830d180cd46aa120ced8360df3ebfd15cb550636

Exfiltration:
139.60.160[.200
168.100.11[.72
174.138.62[.35
185.215.113[.39
193.162.143[.218
193.38.235[.234
45.227.255[.190
88.80.147[.102
93.190.143[.101
93.190.139[.223

Yara Rule

rule stealbit_decode {

meta:

 description = "Yara Rule for StealBit Configuration decryption"

 author = "Yoroi Malware Zlab"

 last_updated = "2021_09_01"

 tlp = "white"

 category = "informational"

strings:

$Offset = { ff 17 18 19 20 00 00 00 00 00 00 }

$decode_Conf = { 8b c1 83 e0 0f 8a 8? ?? ?? ?? ?? 30 8? ?? ?? ?? ?? 41 83 f9 7c }

condition:

all of them

}

Suricata Rule

TLP:AMBER - accessible by Trusted Introducer CSIRT Network Members

Appendix 1 - Extraction of Stack Strings

Function

0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4036C0 0x4

Appendix 2 - Decoder

Stealbit-Configuration-Decryptor available on Yoroi Malware ZLAB public GitHub repository.

https://www.trusted-introducer.org/directory/teams.html
https://github.com/CERT-Yoroi-Malware-ZLab/Stealbit-Configuration-Decryptor

8/8

This blop post was authored by Luigi Martire and Luca Mella of Yoroi Malware ZLAB

