
1/18

GoSecure September 22, 2021

GoSecure Titan Labs Technical Report: BluStealer
Malware Threat

gosecure.net/blog/2021/09/22/gosecure-titan-labs-technical-report-blustealer-malware-threat/

GoSecure Titan Labs obtained a sample of the high-profile malware identified as BluStealer
– that can steal credentials, passwords, credit card data, and more. The expert investigators
at Titan Labs developed this detailed analysis that examines the infection vector,
components, methods of exfiltration and capabilities.
This sample of an optical disc image (ISO) file (01d4b90cc7c6281941483e1cccd438b2) from
GoSecure’s Inbox Detection and Response (IDR) team embedded within the ISO file is a 32-
bit executable (6f7302e24899d1c05dcabbc8ec3e84d4) compiled in Visual Basic 6. The
following is an in-depth analysis of the portable executable (PE).

GoSecure Titan Labs obtained a sample of the high-profile malware identified as BluStealer
– that can steal credentials, passwords, credit card data, and more. The expert investigators
at Titan Labs developed this detailed analysis that examines the infection vector,
components, methods of exfiltration and capabilities.
This sample of an optical disc image (ISO) file (01d4b90cc7c6281941483e1cccd438b2) from
GoSecure’s Inbox Detection and Response (IDR) team embedded within the ISO file is a 32-
bit executable (6f7302e24899d1c05dcabbc8ec3e84d4) compiled in Visual Basic 6. The
following is an in-depth analysis of the portable executable (PE).

Analysis

2.0.1 Infection Vector

The initial infection vector is via malspam containing links to cdn.discord.com. Using
Discord’s content delivery network (CDN) as a malware distribution system continues to grow
in popularity among threat actors. The email (1010589761b3051eec33681d0513242a) in this
case, shown in Figure 1, purports to be from DHL Express, stating that a shipment is on the
way and that it can be tracked or changed by clicking the link labelled here, which downloads

https://www.gosecure.net/blog/2021/09/22/gosecure-titan-labs-technical-report-blustealer-malware-threat/

2/18

the malicious ISO file from hxxps://cdn[.]discordapp[.]com/attachments/
829530662406193185/882109821736865832/Your_DHL_Shipment_Notification.pdf.iso. This
particular campaign does not exclusively use DHL spoofed emails, as emails spoofing other
companies have also been observed dropping the same final payload.

Figure 1: Malspam

2.0.2 BluStealer’s Main Component

As displayed in Figure 2, the resource section of the PE contains data with extremely high
entropy, indicating that it is encrypted. This, along with the large size of the resource section,
suggests that the PE is a loader. Examining the resource section reveals two large arrays of
encrypted data contained within a segment of the resource section named CUSTOM.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_1.jpg

3/18

Figure 2: Packed Resource Section
Opening the PE in x64dbg, we can see that the first instruction at the entry point is a call to
MSVBVM60.ThunRTMain. Executables compiled in VB6 and lower begin with a call to
ThunRTMain, which takes an address as its only argument. This address points to a
structure, beginning with VB5!, that contains information about the given program. At an
offset of 45 bytes, the structure normally contains the address of aSubMain, which is the
program’s main function. However, as displayed in Figure 3, the address in this instance
consists of only null bytes, indicating that the executable had either been obfuscated or had
its compilation routine modified.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_2.jpg

4/18

Figure 3: Call to ThunRTMain
Once inside user-defined code, it can be seen that an encryption key is created with a call to
bcrypt.BCryptGenerateSymm etricKey. Next, an array is created that contains the hex values
1 through 1300. Each element of the array is allotted 16 bytes, as depicted in Figure 4.

Figure 4: Initialized Array
Using the encryption key that was created previously, the malware encrypts the newly
initialized array with a call to bcrypt.BCryptEncrypt. These encrypted bytes will be used as
XOR keys, and are shown in Figure 5.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_3.jpg
https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_4.jpg

5/18

Figure 5: XOR Keys
The malware then loads the first array of ciphertext from its resource section into memory
and proceeds to decrypt it. As can be observed from the decryption routine, depicted in
Figure 6, a byte from the ciphertext, pointed to by the address stored in the ESI register, is
moved into the BL register. This value is then XORed with a XOR key, pointed to by the
address stored in the EAX register. The resulting value is then moved back to its original
place in the ciphertext array. The pointers to both the ciphertext and XOR keys are
incremented by one and the process continues in a loop until the ciphertext is fully
decrypted.

Figure 6: Decryption Routine
The decrypted ciphertext yields a PE. As shown in Figure 7, the malware loads the PE with a
call to user32.CallWindowProcW, with
C:\Windows\Microsoft.NET\Framework\v4.0.30319\AppLaunch.exe as its second argument
and the PE’s address as its third. In this manner, the PE is executed with AppLaunch.exe,
which is a Microsoft .NET launch utility. This confirms our suspicions that the malware is
indeed a loader.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_5.jpg
https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_6.jpg

6/18

Figure 7: Call to CallWindowProcW

2.0.3 ChromeRecovery.exe Stealing Module

Figure 8 displays the loaded PE, a 32-bit .NET assembly with the internal name
ChromeRecovery.exe and the MD5 hash 53e09987f7b648fb5c594734a8f7c4e4, opened in
dnSpy, a .NET debugger and decompiler. ChromeRecovery.exe begins by gathering system
information, such as the computer name, username, Windows version, antivirus solution,
CPU name, GPU name, the amount of RAM, internal IP, and external IP. This information is
written to C:\Users\<username> \AppData \Roaming \Microsoft \Windows \Templates
\credentials.txt. It steals login credentials and credit card data from numerous web browsers,
such as Chrome, Edge, FireFox, Opera, and Yandex, by targeting the Cookies and Web
Data caches. It also steals login credentials from Pidgin, NordVPN, SQLite, FileZilla and
CoreFTP, and numerous email clients, such as Outlook, ThunderBird, and Foxmail. It
appends all data to credentials.txt. Also depicted in Figure 8 is the format in which stolen
credentials are written. Contained within ChromeRecovery.exe’s resource section is a 32-bit
.Net assembly with the internal name ConsoleApp8.exe
(4509c33c251e8e075e4aa95001e35cdf), which is saved to the Templates directory,
executed and then deleted. ConsoleApp8.exe steals credentials from Windows Vault and
WinSCP and appends them to credentials.txt. One of our file detection signatures entitled
malware_blustealer_0, listed below in the Detections section, alerted on
ChromeRecovery.exe as BluStealer. Interestingly, the malware sample that the signature
was based on was a 32-bit VB6-compiled executable
(a1329dab78d5bac41e39034d840c30f1), analyzed in June of this year. Comparing both
samples, we found that BluStealer’s full functionality was originally contained within a single
PE file. However, it would appear as though BluStealer’s authors have opted for a more
modular malware, spreading its functionality, as well as enhancing it, across multiple
binaries.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_7.jpg

7/18

Figure 8: ChromeRecovery.exe Credential Stealing Module

2.0.4 ThunderFox.exe Stealing Module

When execution is transferred back to the loader, it loads the second array of ciphertext from
its resource section into memory and proceeds to decrypt it in the exact same manner as it
employed with the first one. This also results in a 32-bit .NET assembly
(00cdcfc91db339be14f441be75e0dec7), which is also loaded with AppLaunch.exe via
user32.CallWindowProcW. Opening the file, internally named 5.exe, in dnSpy reveals that it
decompresses the file entitled app from its resource section and reflectively loads it via a call
to MethodBase.Invoke, as shown in Figure 9.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_8.jpg

8/18

Figure 9: 5.exe
The decompressed file is yet another 32-bit .NET Assembly
(6ae510da968ebcbf5a8661c080ac12fd). Its name, Thunder-Fox.exe, is an amalgamation of
ThunderBird and FireFox since it targets Mozilla products, which also includes Waterfox, K-
Meleon, IceDragon, Cyberfox, BlackHawK, Pale Moon. These products are also targeted by
ChromeRecovery.exe but in a different manner. As depicted in Figure 10, ThunderFox
extracts login credentials from logins.json, key4.db, signons.sqlite, and key3.db. logins.json
stores encrypted passwords for Mozilla products, while key4.db is the Network Security
Services (NSS) key database used to store Mozilla encryption data, which is required to
decrypt the encrypted passwords in logins.json. signons.sqlite and key3.db have the same
functionality just described but are used with legacy versions of Mozilla products. The stolen
data is formatted the same as with ChromeRecovery and is also appended to credentials.txt.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_9.jpg

9/18

Figure 10: ThunderFox Credentials Stealing Module

2.0.5 Exfiltration Traffic

Once ThunderFox is finished and execution is transferred back to BluStealer’s main module,
it makes a call to winhttp.WinHttpConnect, which returns a connection handle to an HTTP
session. As displayed in Figure 11, the second argument, specifying the target server, is
api.telegram.org, which is being used as BluStealer’s C2 infrastructure.

Figure 11: Call to winhttp.WinHttpConnect
The Final POST request and response from its C2 server can be viewed in Figure 12 and
Figure 13, respectively. The request’s URL begins with the BotID
1901905375:AAFoPAvBxaWxmDiYbdJWH-OdsUuObDY0pjs, followed by the directory

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_10.jpg
https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_11.jpg

10/18

entitled sendDocument with the arguments chat_id and caption. The value of caption is the
name of the text document containing the stolen information, followed by the delimiter :::, and
the victim’s computer name and username.

Figure 12: Multipart/Form-Data Credentials Exfiltration

Figure 13: C2 Response
BluStealer sends another HTTP POST request, which unlike the first one, is not of the
Content-Type multipart/form-data. As observed in Figure 14, it sends the stolen data as in
the first request. However, the URL is different from that of the first one, as it ends in the
directory sendMessage instead of sendDocument and is without arguments. Moreover, the
victim’s computer name and username are now contained within the text parameter and
follow the value Passwords. It should be noted that the network traffic from BluStealer’s June
sample shares many similarities with the present sample. However, it is sent over Simple
Mail Transfer Protocol (SMTP) rather than HTTP.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_12.jpg
https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_13.jpg

11/18

Figure 14: Credentials Exfiltration

2.0.6 BluStealer’s Main Component’s Stealing Capabilities

Besides the ability to load stealing modules and exfiltrate data, the main component also
comes with its own stealing capabilities. As shown in Figure 15, it makes a call to
msvbvm60.rtcDir, an undocumented VB runtime function that returns file names from a
directory. The directory being inquired about is Zcash, which is a cryptocurrency.

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_14.jpg
https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_15.jpg

12/18

Figure 15: Cryptocurreny Query
Figure 16 portrays all the processes, captured by Process Monitor, that query cryptocurrency
folders. The cryptocurrency wallets targeted include Zcash, Armory, Bytecoin, Jaxx Liberty,
Exodus, Ethereum, Electrum, Guarda, and Coinomi.

Figure 16: Cryptocurrency Wallets
BluStealer’s main component also has keylogging functionality, which is achieved by
employing the commonly used method of polling user32.getAsyncKeyState, which
determines whether a key is pressed or not at the time of the call.

Conclusion

The newly discovered threat BluStealer is equipped with a robust credential stealing tool set
and is following the unfortunate trend of utilizing legitimate services, such as Telegram and
Discord, for its malware infrastructure, which makes detection increasingly challenging.

By closely monitoring, analyzing, and reverse engineering, GoSecure Titan Labs, as part of
our MDR offering, have created signatures to detect the emerging threats discussed in this
report.

Indicators of Compromise

Indicators of
Compromise

Type Indicator Description

MD5 1010589761b3051eec33681d0513242a Malspam Email

MD5 01d4b90cc7c6281941483e1cccd438b2 ISO File

https://www.gosecure.net/wp-content/uploads/Technical-Report-BluStealer_16.jpg

13/18

MD5 6f7302e24899d1c05dcabbc8ec3e84d4 BluStealer’s Main
Component

MD5 53e09987f7b648fb5c594734a8f7c4e4 ChromeRecovery.exe

MD5 4509c33c251e8e075e4aa95001e35cdf ConsoleApp8.exe

MD5 00cdcfc91db339be14f441be75e0dec7 5.exe

MD5 6ae510da968ebcbf5a8661c080ac12fd ThunderFox.exe

MD5 a1329dab78d5bac41e39034d840c30f1 BluStealer June
Sample

Detection

GoSecure Titan Labs are providing the following signatures to help the community in
detecting and identifying the threats discussed in this report.

14/18

alert smtp any any -> $EXTERNAL_NET any (
 msg:"GS MALWARE BluStealer SMTP Exfiltration";
 content:"Subject|3a 20|Passwords::::"; nocase; fast_pattern;
 content:"\"; distance:0;
 flow:to_server, established;
 metadata:created 2021-07-02, type malware.stealer, os windows, tlp white, id 0;
classtype:trojan-activity;
 sid:300001712;
 rev:1;
)

alert http any any -> $EXTERNAL_NET any (
 msg:"GS MALWARE BluStealer HTTP Exfiltration Group 1";
 content:"POST"; http_method;
 content:"caption=credentials.txt:::"; http_uri; nocase; fast_pattern;
 flow:to_server, established;
 metadata:created 2021-09-10, type malware.stealer, os windows, tlp white, id 1;
classtype:trojan-activity;
 sid:300001775;
 rev:1;
)

alert http any any -> $EXTERNAL_NET any
 msg:"GS MALWARE BluStealer HTTP Exfiltration Group 2";
 content:"POST"; http_method;
 content:"text=Passwords:::"; http_client_body; depth:17; nocase; fast_pattern;
flow:to_server, established;
 metadata:created 2021-09-16, type malware.stealer, os windows, tlp white, id 2;
classtype:trojan-activity;
 sid:300001776;
 rev:1;
)

rule malware_other_vb5_loader_0 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "VB5/6-based Loaders"
 reference = "https://zero2auto.com/2020/06/22/unpacking-visual-basic-packers/"
 hash = "6f7302e24899d1c05dcabbc8ec3e84d4"
 created = "2021-09-10"
 os = "windows"
 type = "malware.loader"
 tlp = "white"
 rev = 1
 strings:
 $obfuscated_aSubMain = { 56 42 35 21 [40] 00 00 00 00 }
 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 math.entropy(0, filesize) >= 7.0 and
 pe.imports("MSVBVM60.dll", 100) and
 $obfuscated_aSubMain
}

15/18

rule malware_blustealer_0{
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "Blustealer Unpacked Infostealer"
 created = "2020-06-29"
 type = "malware.stealer"
 hash = "a1329dab78d5bac41e39034d840c30f1"
 os = "windows"
 tlp = "white"
 rev = 1
 strings:
 $string1 = "::::" ascii wide
 $string2 = "CompName: " ascii wide
 $string3 = " - 64-bit" ascii wide
 $string4 = "=============================" ascii wide
 $stealer1 = "COREFTP" ascii wide
 $stealer2 = "Outlook" ascii wide
 $stealer3 = "signons.sqlite" nocase ascii wide
 $stealer4 = "filezilla" nocase ascii wide
 $stealer5 = "nordvpn" nocase ascii wide
 $stealer6 = "firefox" nocase ascii wide
 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 filesize < 464KB and
 2 of ($string*) and
 3 of ($stealer*)
}

rule malware_blustealer_1 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "BluStealer Main Component"
 hash = "6f7302e24899d1c05dcabbc8ec3e84d4"
 created = "2021-09-10"
 os = "windows"
 type = "malware.stealer"
 tlp = "white"
 rev = 1
 strings:
 $obfuscated_aSubMain = { 56 42 35 21 [40] 00 00 00 00 }
 $MSVBVM60 = "MSVBVM60.dll" ascii wide nocase
 $decryption_routine = { 8b [5] 8b [2] 03 [5] 0f 80 [4] 8b [5] 89 [2] 8b [5] 8b
 [2] 3b [5] 7f ?? ff 7? ?? 8b [2] ff 3? e8 [4] 8b ?? 8b
 [5] ff 7? ?? 8b [5] ff 7? ?? e8 [4] 8a ?? 32 ?? ff 7?
 ?? 8b [2] ff 3? e8 [4] 88 ?? 8b [2] 83 c? ?? 0f 80 [4]
 89 [2] eb }
 $behavior_0 = "https://api.telegram.org/bot" ascii wide
 $behavior_1 = "/sendDocument?chat_id=" ascii wide
 $behavior_2 = "&caption=" ascii wide
 $behavior_3 = "text=" ascii wide
 $behavior_4 = "&chat_id=" ascii wide
 $behavior_5 = "Content-Disposition: form-data; name=\"document\"; filename=\""

16/18

ascii wide
 $behavior_6 = "\\Ethereum\\keystore" ascii wide
 $behavior_7 = "RegWrite" ascii wide
 $behavior_8 = "\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe" ascii wide
 $behavior_9 = "\\Microsoft.NET\\Framework\\v2.0.50727\\InstallUtil.exe" ascii
wide
 $behavior_10 =
"HKCU\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\RunOnce*RD_" ascii wide
 $behavior_11 = "GetAsyncKeyState" ascii wide
 $behavior_12 = "SHFileOperationA" ascii wide
 $behavior_13 = "GetDesktopWindow" ascii wide
 $behavior_14 = "SHGetSpecialFolderLocation" ascii wide
 $behavior_15 = "SHGetPathFromIDListA" ascii wide
 $behavior_16 = "CallWindowProcW" ascii wide
 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 $obfuscated_aSubMain and
 $MSVBVM60 and
 ($decryption_routine or 13 of ($behavior_*))
}
rule malware_thunder_fox_gzip_0 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "Gzip Compressd ThunderFox Stealer"
 hash = "00cdcfc91db339be14f441be75e0dec7"
 created = "2021-09-15"
 os = "windows"
 type = "malware.stealer"
 tlp = "white"
 rev = 1
 strings:
 $compressed_payload = { 00 00 00 00 00 20 FA 48 04 00 1F 8B 08 00 00 00
 00 00 04 00 AC BD 09 80 1C 47 75 37 3E D3 77 CF
 B5 5B D3 B3 3D B3 BB D2 CE 4A F2 4A AD E9 99 95
 76 57 C7 4A 3E 24 1F F8 C4 B6 6C 0B 7B 46 3E 24 }
 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 $compressed_payload
}

rule malware_thunder_fox_0 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "ThunderFox Stealer"
 hash = "6ae510da968ebcbf5a8661c080ac12fd"
 created = "2021-09-15"
 os = "windows"
 type = "malware.stealer"
 tlp = "white"
 rev = 1
 strings:

17/18

 $browser_0 = "Pale Moon" nocase ascii wide
 $browser_1 = "Firefox" nocase ascii wide
 $browser_2 = "Waterfox" nocase ascii wide
 $browser_3 = "K-Meleon" nocase ascii wide
 $browser_4 = "Thunderbird" nocase ascii wide
 $browser_5 = "IceDragon" nocase ascii wide
 $browser_6 = "Cyberfox" nocase ascii wide
 $browser_7 = "BlackHawK" nocase ascii wide
 $data_store_0 = "logins.json" nocase ascii wide
 $data_store_1 = "key4.db" nocase ascii wide
 $data_store_2 = "signons.sqlite" nocase ascii wide
 $data_store_3 = "key3.db" nocase ascii wide
 $data_store_4 = "moz_logins" nocase ascii wide
 $user_cred_0 = "hostname" nocase ascii wide
 $user_cred_1 = "encryptedUsername" nocase ascii wide
 $user_cred_2 = "encryptedPassword" nocase ascii wide
 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 5 of ($browser_*) and
 3 of ($data_store_*) and
 2 of ($user_cred_*)
}

rule malware_other_stealer_2 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "Generic Windows Vault Credential Stealer"
 reference =
"https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-
VaultCredential.hash = "4509c33c251e8e075e4aa95001e35cdf"
 created = "2021-09-10"
 os = "windows"
 type = "malware.stealer"
 tlp = "white"
 rev = 1
 strings:
 $s1 = "2F1A6504-0641-44CF-8BB5-3612D865F2E5" ascii wide
 $s2 = "Windows Secure Note" ascii wide
 $s3 = "3CCD5499-87A8-4B10-A215-608888DD3B55" ascii wide
 $s4 = "Windows Web Password Credential"ascii wide
 $s5 = "154E23D0-C644-4E6F-8CE6-5069272F999F" ascii wide
 $s6 = "Windows Credential Picker Protector" ascii wide
 $s7 = "4BF4C442-9B8A-41A0-B380-DD4A704DDB28" ascii wide
 $s8 = "Web Credentials" ascii wide
 $s9 = "77BC582B-F0A6-4E15-4E80-61736B6F3B29" ascii wide
 $s10 = "Windows Credentials" ascii wide
 $s11 = "E69D7838-91B5-4FC9-89D5-230D4D4CC2BC" ascii wide
 $s12 = "Windows Domain Certificate Credential" ascii wide
 $s13 = "3E0E35BE-1B77-43E7-B873-AED901B6275B" ascii wide
 $s14 = "Windows Domain Password Credential" ascii wide
 $s15 = "3C886FF3-2669-4AA2-A8FB-3F6759A77548" ascii wide
 $s16 = "Windows Extended Credential" ascii wide
 $s17 = "00000000-0000-0000-0000-000000000000" ascii wide

18/18

 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 all of them
}

rule malware_other_stealer_3 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "Generic WinSCP Credential Stealer"
 reference = "https://gist.github.com/jojonas/07c3771711fb19aed1f3"
 hash = "4509c33c251e8e075e4aa95001e35cdf"
 created = "2021-09-10"
 os = "windows"
 type = "malware.stealer"
 tlp = "white"
 rev = 1
 strings:
 $s1 = "Software\\Martin Prikryl\\WinSCP 2\\Sessions" ascii wide nocase
 $s2 = "HostName" ascii wide nocase
 $s3 = "UserName" ascii wide nocase
 $s4 = "Password"ascii wide nocase
 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 all of them
}

