
1/12

BlackMatter Ransomware Analysis; The Dark Side
Returns

mcafee.com/blogs/enterprise/blackmatter-ransomware-analysis-the-dark-side-returns/

ARCHIVED STORY

By Alexandre Mundo and Marc Elias · September 22, 2021

BlackMatter is a new ransomware threat discovered at the end of July 2021.

This malware started with a strong group of attacks and some advertising from its developers
that claims they take the best parts of other malware, such as GandCrab, LockBit and
DarkSide, despite also saying they are a new group of developers. We at McAfee Enterprise
Advanced Threat Research (ATR), have serious doubts about this last statement as analysis
shows the malware has a great deal in common with DarkSide, the malware associated with
the Colonial Pipeline attack which caught the attention of the US government and law
enforcement agencies around the world.

The main goal of BlackMatter is to encrypt files in the infected computer and demand a
ransom for decrypting them. As with previous ransomware, the operators steal files and
private information from compromised servers and request an additional ransom to not
publish on the internet.

COVERAGE AND PROTECTION ADVICE

McAfee’s EPP solution covers BlackMatter ransomware with an array of prevention and
detection techniques.

ENS ATP provides behavioral content focusing on proactively detecting the threat while also
delivering known IoCs for both online and offline detections. For DAT based detections, the
family will be reported as Ransom-BlackMatter!<hash>. ENS ATP adds 2 additional layers of
protection thanks to JTI rules that provide attack surface reduction for generic ransomware
behaviors and RealProtect (static and dynamic) with ML models targeting ransomware
threats.

Updates on indicators are pushed through GTI, and customers of Insights will find a threat-
profile on this ransomware family that is updated when new and relevant information
becomes available.

TECHNICAL DETAILS

https://www.mcafee.com/blogs/enterprise/blackmatter-ransomware-analysis-the-dark-side-returns/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/gandcrab-ransomware-puts-the-pinch-on-victims/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/tales-from-the-trenches-a-lockbit-ransomware-story
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/darkside-ransomware-victims-sold-short/

2/12

BlackMatter is typically seen as an EXE program and, in special cases, as a DLL (Dynamic
Library) for Windows. Linux machines can be affected with special versions of it too but in
this report, we will only be covering the Windows version.

This report will focus on version 1.2 of BlackMatter while also noting the important changes
in the current version, 2.0.

BlackMatter is programmed in C++ and has a size of 67Kb.

Figure 1.2Information about the malware

Figure 1. Information about the malware
The compile date of this sample is the 23rd of July 2021. While these dates can be altered,
we think it is correct; version 1.9 has a compile time of 12 August 2021 and the latest
version, 2.0, has a date four days later, on the 16th of August 2021. Is clear that the malware
developers are actively improving the code and making detection and analysis harder.

The first action performed by BlackMatter is preparation of some modules that will be needed
later to get the required functions of Windows.

Figure 2. BlackMatter searching for functions

Figure 2. BlackMatter searching for functions
BlackMatter uses some tricks to try and make analysis harder and avoid debuggers. Instead
of searching for module names it will check for hashes precalculated with a ROT13
algorithm. The modules needed are “kernel32.dll” and “ntdll.dll”. Both modules will try to get
functions to reserve memory in the process heap. The APIs are searched using a
combination of the PEB (Process Environment Block) of the module and the EAT (Export
Table Address) and enumerating all function names. With these names it will calculate the
custom hash and check against the target hashes.

Figure 3. BlackMatter detecting a debugger

Figure 3. BlackMatter detecting a debugger
At this point BlackMatter will make a special code to detect debuggers, checking the last 2
“DWORDS” after the memory is reserved, searching for the bytes “0xABABABAB”. These
bytes always exist when a process reserves memory in the heap and, if the heap has one
special flag (that by default is set when a process is in a debugger), the malware will avoid
saving the pointer to the memory reserved so, in this case, the variables will keep a null
pointer.

In Windows operating systems the memory has different conditions based on whether a
program is running in normal mode (as usual) or in debugging mode (a mode used by
programmers, for example). In this case, when the memory is reserved to keep information,
if it is in debugging mode, Windows will mark the end of this memory with a special value,

3/12

“0xABABABAB”. BlackMatter checks for this value and, if found, the debugger is detected.
To avoid having it run normally it will destroy the function address that it gets before,
meaning it will crash, thus avoiding the execution.

Figure 4. Preparing the protection stub function

Figure 4. Preparing the protection stub function
After this check it will create a special stub in the reserved memory which is very simple but
effective in making analysis harder as the stub will need to be executed to see which function
is called and executed.

This procedure will be done with all functions that will be needed; the hashes are saved
hardcoded in the middle of the “.text” section in little structs as data. The end of each struct
will be recognized by a check against the “0xCCCCCCCC” value.

Figure 5. Hashes of the functions needed

Figure 5. Hashes of the functions needed
This behavior highlights that the BlackMatter developers know some tricks to make analysis
harder, though it is simple to defeat both by patching the binary.

After this, the ransomware will use another trick to avoid the use of debuggers. BlackMatter
will call the function “ZwSetInformationThread” with the class argument of 0x11 which will
hide the calling thread from the debuggers.

If the malware executes it correctly and a debugger is attached, the debugging session will
finish immediately. This code is executed later in the threads that will be used to encrypt files.

Figure 6. Another way to detect a debugger

Figure 6. Another way to detect a debugger
The next action is to check if the user that launched the process belongs to the local group of
Administrators in the machine using the function “SHTestTokenMembership”. In the case that
the user belongs to the administrator group the code will continue normally but in other cases
it will get the operating system version using the PEB (to avoid using API functions that can
alter the version) and, if it is available, will open the process and check the token to see if
that belongs to the Administrators group.

Figure 7. BlackMatter checking if it has administrator rights

Figure 7. BlackMatter checking if it has administrator rights
In the case that the user does not belong to the Administrator group the process token will
use a clever trick to escalate privileges.

4/12

The first action is to prepare the string “dllhost.exe” and enumerate all modules loaded. For
each module it will check one field in the initial structure that all executables have that keeps
the base memory address where it will be loaded (for example, kernel32.dll in 0x7fff0000)
and will compare with its own base address. If it is equal, it will change its name in the PEB
fields and the path and arguments path to “dllhost.exe” (in the case of the path and argument
path to the SYSTEM32 folder, where the legitimate “dllhost.exe” exists). This trick is used to
try and mislead the user. For each module found it will check the base address of the module
with its own base address and, at that moment, will change the name of the module loaded,
the path, and arguments to mislead the user.

Figure 8. Decryption of the string “dllhost.exe”

Figure 8. Decryption of the string “dllhost.exe”
The process name will be “dllhost.exe” and the path will be the system directory of the victim
machine. This trick, besides not changing the name of the process in the TaskManager, can
make a debugger “think” that another binary is loaded and remove all breakpoints
(depending on the debugger used).

Figure 9. Changing the name and path in the PEB

Figure 9. Changing the name and path in the PEB
The second action is to use one exploit using COM (Component Object Model) objects to try
to elevate privileges before finishing its own instance using the “Terminate Process” function.

For detection, the module uses an undocumented function from NTDLL.DLL,
“LoadedModulesLdrCallback” that lets the programmer set a function as a callback where it
can get the arguments and check the PEB. In this callback the malware will set the new
Unicode strings using “RtlInitUnicodeString”; the strings are the path to “dllhost.exe” in the
system folder and “dllhost.exe” as the image name.

The exploit used to bypass the UAC (User Access Control), which is public, uses the COM
interface of CMSTPLUA and the COM Elevation Moniker.

In the case that it has administrator rights or uses the exploit with success, it will continue
making the new extension that will be used with the encrypted files. For this task it will read
the registry key of “Machine Guid” in the cryptographic key (HKEY LOCAL MACHINE).

This entry and value exist in all versions of Windows and is unique for the machine; with this
value it will make a custom hash and get the final string of nine characters.

Figure 10. Creating the new extension for the encrypted files

Figure 10. Creating the new extension for the encrypted files

5/12

Next, the malware will create the ransom note name and calculate the integrity hash of it.
The ransom note text is stored encrypted in the malware data. Usually the ransom note
name is “%s.README.txt”, where the wildcard is filled with the new extension generated
previously.

The next step is to get privileges that will be needed later; BlackMatter tries to get many
privileges:

· SE_BACKUP_PRIVILEGE
· SE_DEBUG_PRIVILEGE, SE_IMPERSONATE_PRIVILEGE

· SE_INC_BASE_PRIORITY_PRIVILEGE

· SE_INCREASE_QUOTA_PRIVILEGE

· SE_INC_WORKING_SET_PRIVILEGE

· SE_MANAGE_VOLUME_PRIVILEGE

· SE_PROF_SINGLE_PROCESS_PRIVILEGE

· SE_RESTORE_PRIVILEGE

· SE_SECURITY_PRIVILEGE

· SE_SYSTEM_PROFILE_PRIVILEGE

· SE_TAKE_OWNERSHIP_PRIVILEGE

· SE_SHUTDOWN_PRIVILEGE

Figure 11. Setting special privileges

Figure 11. Setting special privileges
After getting the privileges it will check if it has SYSTEM privileges, checking the token of its
own process. If it is SYSTEM, it will get the appropriate user for logon with the function
“WTSQueryUserToken”. This function only can be used if the caller has “SeTcbPrivilege”
that, by default, only SYSTEM has.

Figure 12. Obtaining the token of the logged on user

Figure 12. Obtaining the token of the logged on user
After getting the token of the logged on user the malware will open the Windows station and
desktop.

In the case that it does not have SYSTEM permissions it will enumerate all processes in the
system and try to duplicate the token from “explorer.exe” (the name is checked using a
hardcoded hash), if it has rights it will continue normally, otherwise it will check again if the

6/12

token that was duplicated has administrator rights.

In this case it will continue normally but in other cases it will check the operating system
version and the CPU (Central Processing Unit) mode (32- or 64- bits). This check is done
using the function “ZwQueryInformationProcess” with the class 0x1A
(ProcessWow64Information).

Figure 13. Checking if the operating system is 32- or 64-bits

Figure 13. Checking if the operating system is 32- or 64-bits
In the case that the system is 32-bits it will decrypt one little shellcode that will inject in one
process that will enumerate using the typical “CreateRemoteThread” function. This shellcode
will be used to get the token of the process and elevate privileges.

In the case that the system is 64-bits it will decrypt two different shellcodes and will execute
the first one that gets the second shellcode as an argument.

Figure 14. BlackMatter preparing shellcodes to steal system token

Figure 14. BlackMatter preparing shellcodes to steal system token
These shellcodes will allow BlackMatter to elevate privileges in a clean way.

Is important to understand that to get the SYSTEM token BlackMatter will enumerate the
processes and get “svchost.exe”, but not only will it check the name of the process, it will
also check that the process has the privilege “SeTcbPrivilege”. As only SYSTEM has it by
default (and it is one permission that cannot be removed from this “user”) it will be that this
process is running under SYSTEM and so it becomes the perfect target to attack with the
shellcodes and steal the token that will be duplicated and set for BlackMatter.

Figure 15.Checking if the target process is SYSTEM

Figure 15. Checking if the target process is SYSTEM
After this it will decrypt the configuration that it has embedded in one section. BlackMatter
has this configuration encrypted and encoded in base64.

This configuration has a remarkably similar structure to Darkside, offering another clear hint
that the developers are one and the same, despite their claims to the contrary.

After decryption, the configuration can get this information:

7/12

RSA Key used to protect the Salsa20 keys used to encrypt the files.
A 16-byte hex value that remarks the victim id.
A 16-byte hex value that is the AES key that will be used to encrypt the
information that will be sent to the C2.
An 8/9-byte array with the behavior flags to control the ransomware behavior.
A special array of DWORDs (values of 4 bytes each one) that keep the values
to reach the critical points in the configuration.
Different blocks encoded and, sometimes, encrypted again to offer the field
more protection.

After getting the configuration and parsing it, BlackMatter will start checking if it needs to
make a login with some user that is in the configuration. In this case it will use the function
“LogonUser” with the information of the user(s) that are kept in the configuration; this
information has one user and one password: “test@enterprise.com:12345” where “test” is
the user, “@enterprise.com” is the domain and “12345” the password.

The next action will be to check with the flag to see if a mutex needs to be created to avoid
having multiple instances.

This mutex is unique per machine and is based in the registry entry “MachineGuid” in the key
“Cryptography”. If the system has this mutex already the malware will finish itself.

Making a vaccine with a mutex can sometimes be useful but not in this case as the
developers change the algorithm and only need to set the flag to false to avoid creating it.

Figure 16. Creation of the mutex to avoid multiple instances

Figure 16. Creation of the mutex to avoid multiple instances
After, it will check if it needs to send information to the C2. If it does (usually, but not always)
it will get information of the victim machine, such as username, computer name, size of the
hard disks, and other information that is useful to the malware developers to know how many
machines are infected.

This information is encoded with base64 and encrypted with AES using the key in the
configuration.

Figure 17. Encrypted information sent to the C2

Figure 17. Encrypted information sent to the C2
The C2 addresses are in the configuration (but not all samples have them, in this case the
flag to send is false). The malware will try to connect to the C2 using a normal protocol or will
use SSL checking the initial “http” of the string.

Figure 18. Get information of the victim machine and user

Figure 18. Get information of the victim machine and user

8/12

The information is prepared in some strings decrypted from the malware and sent in a POST
message.

Figure 19. Choose to send by HTTP or HTTPS

Figure 19. Choose to send by HTTP or HTTPS
The message has values to mislead checks and to try and hide the true information as
garbage. This “fake” data is calculated randomly.

The C2 returns garbage data but the malware will check if it starts and ends with the
characters “{“ and “}”; if it does the malware will ignore sending the information to another
C2.

Figure 20. Checking for a reply from the C2 after sending

Figure 20. Checking for a reply from the C2 after sending
BlackMatter is a multithread application and the procedure to send data to the C2 is done by
a secondary thread.

After that, BlackMatter will enumerate all units that are FIXED and REMOVABLE to destroy
the recycle bin contents. The malware makes it for each unit that has it and are the correct
type. One difference with DarkSide is that it has a flag for this behavior while BlackMatter
does not.

The next action is to delete the shadow volumes using COM to try and avoid detection using
the normal programs to manage the shadow volumes. This differs with DarkSide that has a
flag for this purpose.

Figure 21. Destruction of the shadow volumes using COM

Figure 21. Destruction of the shadow volumes using COM
BlackMatter will check another flag and will enumerate all services based on one list in the
configuration and will stop target services and delete them.

This behavior is the same as DarkSide.

Figure 22. Stopping services and deleting them

Figure 22. Stopping services and deleting them
Processes will be checked and terminated as with DarkSide, based on other configuration
flags.

After terminating the processes BlackMatter will stop the threads from entering suspension
or hibernating if someone is using the computer to prevent either of those outcomes
occurring when it is encrypting files. This is done using the function
“ZwSetThreadExecutionState”.

9/12

Figure 23. Preventing the machine being suspended or hibernated

Figure 23. Preventing the machine being suspended or hibernated
The next action will be to enumerate all units, fixed and on the network, and create threads
to encrypt the files. BlackMatter uses Salsa20 to encrypt some part of the file and will save a
new block in the end of the file, protected with the RSA key embedded in the configuration
with the Salsa20 keys used to encrypt it. This makes BlackMatter slower than many other
ransomwares.

After the encryption it will send to the C2 all information about the encryption process, how
many files were crypted, how many files failed, and so on. This information is sent in the
manner previously described, but only if the config is set to true.

Figure 24. Release of the mutex

Figure 24. Release of the mutex
If one mutex was created in this moment it will be released. Later it will check the way that
the machine boots with the function “GetSystemMetrics”. If the boot was done in Safe Mode
BlackMatter will set some keys for persistence in the registry for the next reboot and then
attack the system, changing the desktop wallpaper.

Figure 25. Determining whether the system boots in safe mode or normal mode

Figure 25. Determining whether the system boots in safe mode or normal mode
Of course, it will disable the safeboot options in the machine and reboot it (it is one of the
reasons why it needs the privilege of shutdown).

To ensure it can launch in safe mode, the persistence key value with the path of the malware
will start with a ‘*’.

Figure 26. Setting the persistance registry key

Figure 26. Setting the persistance registry key
If the machine starts in the normal way, it will change the desktop wallpaper with an
alternative generated in runtime with some text about the ransom note.

Figure 27. BlackMatter makes the new wallpaper in runtime

Figure 27. BlackMatter makes the new wallpaper in runtime

VERSIONS 1.9 AND 2.0

The new versions have some differences compared with versions 1.2 to 1.6:

10/12

Changes in the stub generation code. Previously only one type of stub was used, but in
more recent versions several types of stubs are employed, with one chosen randomly
per function. Anyways the stubs can be removed without any problem by patching the
binary.
A new byte flag in the configuration that remarks if it needs to print the ransom note
using the available printer in the system. Very similar to Ryuk but instead BlackMatter
uses APIs from “winspool.drv”.
Removed one C2 domain that was shut down by the provider.

Additional changes in version 2.0:

This version changes the crypto algorithm to protect the configuration making it more
complex to decrypt it.
Removed the last C2 that was shut down by the provider.
Added a new C2 domain.

These changes suggest the developers are active on social media, with an interest in
malware and security researchers.

VACCINE

Unlike some ransomware we’ve seen in the past, such as

Technique
ID

Technique
Description

Observable

T1134 Access Token
Manipulation

BlackMatter accesses and manipulates different
process tokens.

T1486 Data Encrypted
for Impact

BlackMatter encrypts files using a custom Salsa20
algorithm and RSA.

T1083 File and Directory
Discovery

BlackMatter uses native functions to enumerate files
and directories searching for targets to encrypt.

T1222.001 Windows File and
Directory
Permissions
Modification

BlackMatter executes the command icacls
“<DriveLetter>:*” /grant Everyone: F /T /C /Q to grant
full access to the drive.

T1562.001 Disable or Modify
Tools

BlackMatter stops services related to endpoint security
software.

T1106 Native API BlackMatter uses native API functions in all code.

T1057 Process
Discovery

BlackMatter enumerates all processes to try to discover
security programs and terminate them.

https://attack.mitre.org/techniques/T1134
https://attack.mitre.org/techniques/T1486/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1222/001
https://attack.mitre.org/techniques/T1562/001
https://attack.mitre.org/techniques/T1106
https://attack.mitre.org/techniques/T1057/

11/12

T1489 Service Stop BlackMatter stops services.

T1497.001 System Checks BlackMatter tries to detect debuggers, checking the
memory reserved in the heap.

T1135 Network Share
Discovery

BlackMatter will attempt to discover network shares by
building a UNC path in the following format for each
driver letter, from A to Z: \\<IP>\<drive letter>$

T1082 System
Information
Discovery

BlackMatter uses functions to retrieve information about
the target system.

T1592 Gather Victim
Host Information

BlackMatter retrieves information about the user and
machine.

T1070 Valid Accounts BlackMatter uses valid accounts to logon to the victim
network.

T1547 Boot or Logon
Autostart
Execution

BlackMatter installs persistence in the registry.

T1102 Query Registry BlackMatter queries the registry for information.

T1018 Remote System
Discovery

BlackMatter enumerates remote machines in the
domain.

T1112 Modify Registry BlackMatter changes registry keys and values and sets
new ones.

CONCLUSION

BlackMatter is a new threat in the ransomware field and its developers know full well how to
use it to attack their targets. The coding style is remarkably similar to DarkSide and, in our
opinion, the people behind it are either the same or have a very close relationship.

BlackMatter shares a lot of ideas, and to some degree code, with DarkSide:

Configurations are remarkably similar, especially with the last version of Darkside,
besides the change in the algorithm to protect it which, despite having less options,
remains with the same structure. We do not think that the developers of BlackMatter
achieved this similarity by reversing DarkSide as that level of coding skill would have
allowed them to create an entirely new ransomware from the ground up. Also, the idea
that the DarkSide developers gave or sold the original code to them does not make any
sense as it is an old product.
Dynamic functions are used in a similar way to DarkSide.
It uses the same compression algorithm for the configuration.

https://attack.mitre.org/techniques/T1489
https://attack.mitre.org/techniques/T1497/001/
https://attack.mitre.org/techniques/T1135/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1592/
https://attack.mitre.org/techniques/T1070/
https://attack.mitre.org/techniques/T1547/
https://attack.mitre.org/techniques/T1102/
https://attack.mitre.org/techniques/T1018/
https://attack.mitre.org/techniques/T1112/

12/12

The victim id is kept in the same way as DarkSide.

It is important to keep your McAfee Enterprise products updated to the latest detections and
avoid insecure remote desktop connections, maintain secure passwords that are changed on
a regular basis, take precautions against phishing emails, and do not connect unnecessary
devices to the enterprise network.

Despite some effective coding, mistakes have been made by the developers, allowing the
program to be read, and a vaccine to be created, though we will stress again that it can
affect other programs and is not a permanent solution and should be employed only if you
accept the risks associated with it.

