Using Zeek to track communication state

CJ corelight.com/blog/using-zeek-to-track-communication-state

1/11

https://corelight.com/blog/using-zeek-to-track-communication-state

UnPatchedDCOpenFileRaw.pcapng

@ miRE Re>EF IEE AQAQR

I‘dcerpc
No. | Time | Source | Destination | Protocol | Lengtt| Info
1991 51.868872 192.168.0.15 192.168.8.85 DCERPC 242 Bind: call_id: 1, Fragment: Single, 1 context items: E..
51.870407 192.168.0.85 192.168.8.15 Bind_ack: call_id: 1, Fragment: Single, max_xmit: 4288..
51.873268 192.168.0.15 192.168.8.85 EfsRpcOpenFileRaw request
52.896420 192.168.0.85 192.168.0.15 EfsRpcOpenFileRaw response, Error: WERR_BAD_NETPATH

Frame 1991: 242 bytes on wire (1936 bits), 242 bytes captured (1936 bits) on interface \Device\NPF_{5586BDCD-AF33-438A-BED1-4996867D5CB0}, it
Ethernet II, Src: VMware_39:e1:89 (@@:0c:29:39:e1:09), Dst: VMware_f9:91:35 (@@:8c:29:19:91:35)
Internet Protocol Version 4, Src: 192.168.0.15, Dst: 192.168.0.85
Transmission Control Protocol, Src Port: 33524, Dst Port: 445, Seq: 773, Ack: 1173, Len: 188
NetBIOS Session Service
SMB2 (Server Message Block Protocol version 2)
~ SMB2 Header
ProtocolId: @xfe534d42
Header Length: 64
Credit Charge: 1
Channel Seguence: @&
Reserved: 8000
Command: Write (9)
Credits requested: 127
> Flags: 8x8@08@888, Signing
Chain Offset: @x@0808008
Message ID: 6
Process Id: 0x@8008008
> Tree Id: 8x00000001 \\192.168.8.85\IPC$
> Session Id: @x08001080ed@8@02d Acct: Domain: Host:
Signature: acd5fa5ccd7468cb75fc9f1le381b71c5

v Write Request (@x@9)
> StructureSize: 8x@@31
Data Offset: Bx@87@
Write Length: 72
File Offset: @
> GUID handle File: lsarpc
Channel: None (8x00@80000)
Remaining Bytes: @
> Write Flags: @x@8028080
Blob Offset: @x800080000
Blob Length: @
Channel Info Blob: NO DATA
v Distributed Computing Environment / Remote Procedure Call (DCE/RPC) Bind, Fragment: Single, Fraglen: 72, Call: 1
Version: 5
Version (minor): @
Packet type: Bind (11)
Packet Flags: @x@3
Data Representation: 10008008 (Order: Little-endian, Char: ASCII, Float: IEEE)
Frag Length: 72
Auth Length: @
Call ID: 1
Max Xmit Frag: 4288
Max Recv Frag: 4280
Assoc Group: @x00000000
Num Ctx Items: 1
Ctx Item[1]: Context ID:®, EFS, 32bit NDR
Context ID: @
Num Trans Items: 1
~ Abstract Syntax: EF5 V1.0
Interface: EFS UUID: c681d488-d850-11d@-Bc52-00c@afdIarie
Interface Ver: 1
Interface Ver Minor: @
» Transfer Syntax[1]: 32bit NDR V2

@c 29 f9 91 35 @@ @c 29 39 @9
ed 11 2f 40 00 40 @6 a7 30 c@ a8
55 82 f4 01 bd bd b® 30 e5 d3 8f
5 ae @b 00 00 @0 0@ @@ bs fe 53
90 00 20 00 00 @9 9@ 7T 00 08 @0
90 96 20 00 00 20 00 @0 00 00 20
90 2d 20 00 e0 @0 10 @@ 0@ ac d5
chb 75 fc 9f le 38 1b 71 c5 31 @@
90 90 20 00 00 20 00 @0 0@ df 12
90 91 20 00 00 24 00 @0 00 00 20
00 90 20 00 00 20 00 @0 00 05 @0
90 48 00 00 00 21 00 @0 00 b8 1@
00 21 90 20 00 @@ 00 @1 00 88 d4

Bc 52 0@ c@ 4f d9 eof 7e ol ee
Ba eb 1c c9 11 9f eB @8 0@ 2b 1@
00

- h Interface UUID (dcerpe.cn_bind_to_uuid) 16 bytes Packets: 3286 - Displayed: 26 (0.8%)

Home » Using Zeek to track communication state
September 21, 2021 by Paul Dokas

https://corelight.com/blog
https://corelight.com/blog/author/paul-dokas

One of Zeek's greatest strengths is its ability to deeply inspect packet streams that are fed
into it. It is adept not only at identifying network protocols but also parsing them to extract
large amounts of useful information. There is another strength that is often overlooked: Zeek
not only extracts information from individual packets of network sessions, it also provides a
very flexible and useful way to track state across the lifetime of network sessions. This is
particularly useful when examining network protocols such as Server Message Block (SMB)
that rely on the endpoint devices to track the state of their conversation.

To illustrate this point, here is a Zeek script for detecting attempts to exercise the PetitPotam
exploits. We will walk through how this works in this blog post.

The PetitPotam exploit offers an opportunity to illustrate the power of Zeek for tracking the
state of network conversations over their lifetime. PetitPotam abuses EFS DCERPC
functions to trigger an NTLM relay attack that can be used to gain elevated privileges in a
Windows AD domain. The exploit takes place inside of an SMB session that involves several
phases that must be tracked: the negotiation of the session’s parameters, an authentication,
one or more RPC function calls, and their matching responses. As a result, detecting this
exploit requires tracking the state of several network protocols over the lifetime of their
sessions. There is no single packet or portion of the ongoing conversation that contains
everything necessary for detection.

First, let's examine the different parts of a successful PetitPotam exploitation, and then we’ll
see how Zeek tracks the state of the network protocols for us to enable the detection
process.

PetitPotam exploitation works by abusing the lack of sufficient permission checking when
calling EFS DCERPC functions on remote Windows systems. In most cases, calling a
remote DCERPC function occurs over an SMB session, so each exploitation starts by
negotiating the SMB session’s parameters. Zeek takes care of tracking the state of each
SMB session and its associated TCP session for us out of the box by storing much of what it
knows for later use. This information is stored inside of the record that Zeek keeps for each
network connection that it sees. By tradition, the connection record is referred to by the
variable c , and additional information about each connection is stored in sub-variables
delimited by the $ operator. For example, additional information about the current state of
each SMB session is stored in c$smb_state . Figure 1 shows a small portion of the
information that Zeek has recorded about an SMB read operation from
\\192.168.0.85\IPC$ (Note: this snippet is paired down for readability; there is a lot more
information available in c$smb_state). What you need to know is that Zeek is tracking this
type of information for us across the lifetime of each SMB session. As each SMB session
progresses, Zeek will add or update values to this subrecord so that it represents a summary
of the SMB session’s current state.

3/11

https://zeek.org/
https://github.com/corelight/PetitPotam/blob/master/scripts/main.zeek
https://us-cert.cisa.gov/ncas/current-activity/2021/07/27/microsoft-releases-guidance-mitigating-petitpotam-ntlm-relay
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-efsr/08796ba8-01c8-4872-9221-1000ec2eff31
https://en.hackndo.com/ntlm-relay/
https://docs.zeek.org/en/master/scripts/base/protocols/smb/main.zeek.html#type-SMB::State
https://docs.zeek.org/en/master/scripts/base/protocols/smb/main.zeek.html#type-SMB::CmdInfo

cSsmb_state=|
current_cmd=[
ts=1630594390.078445,
uid=CPQgUedil 9bDTvuTld,
command=READ,
status=SUCCESS,
rtt=1.0 sec 20.0 msecs E879.983902 usecs,
version=5MB2
1,
current file=[
ts=1630594390.069815,
uid=CPQgUedil9bhDTvuTld,
action=SMB::PIPE READ,
path=\%192.,168.0.85\IPCS%,
name=lsarpc,
size=0,
£fid=34359743200,
]

Figure 1

The next step in detecting a PetitPotam exploit is to dissect the DCERPC function calls that
ride on top of the SMB session, and look for signs of someone attempting to trigger an NTLM
relay by making an EFS function call. Again, Zeek takes care of most of these details for us
by treating DCERPC as just another network layer above SMB. Also like the SMB sessions,
Zeek stores state information about the current DCERPC call or response in several places
within the c variable. In the case of DCERPC, this state information is stored in

cdce_rpc , cdce_rpc_state ,and c$dce_rpc_backing .

Unfortunately, the DCERPC protocol’s multiplexed nature makes it more difficult to analyze
than other protocols. Function calls and responses do not need to be sequential; they can be
interleaved and sometimes even out of order. That is, inside of a single SMB session, there
can be more than one DCERPC function call active at the same time awaiting a response. To
add to the complexity, DCERPC requires a separate bind action within the SMB session that
selects the family of functions that will be called. This means that a single remote function
call will require a bind action, a function call, and a response, all of which will appear in
separate portions of the TCP session.

Thankfully, Zeek tracks all of these details for us. Consider Figures 2, 3, and 4 below which
show the bind, call, and response sequence of packets that exist during an attempt to trigger
the PetitPotam exploit. Prior to this, the attacker (192.16.0.15) has negotiated an SMB2
session with the victim (192.168.0.85). In Figure 2, the attacker binds to the DCERPC

4/11

endpoint ¢681d488-d850-11d0-8c52-00c04fd90f7e , which is associated with the
Windows Encrypted File System DCERPC functions (see the line near the bottom of Figure
2 that is highlighted in blue).

5/11

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-efsr/08796ba8-01c8-4872-9221-1000ec2eff31

[W] £ UnPatchedDCOpenFileRaw. pcapng

F = 9 (] N =) =

AD A0 mBRBRBRE Ae2=E¢ R E QaQqal

N | dcerpe

Mo, | Tima Saurce Dastination | Pratocol Info

1991 51.@26BET2 192.168.0.15 192.168.0. 85 DCERPC Bind: call_id: 1, Fragment: Single, 1 context items: E_

51, 07Rae7 192.168.0.65 192.168.0.15 Bind_ack: call_id: 1, Fragment: Single, max_wmit: 4280.
51.073268 192.168.0.15 192.168.0. 65 EfsRpcOpenFileRaw reguest
52.096428 192.1648.0.85 192.168.0.15 EfsRpclpenFilefaw response, Error: WERR_BAD METPATH

Frame 1991: 242 bytes on wire (1936 bits), 242 bytes captured (1538 bits) on interface ‘Device\NPF_{S558EBDCD-AFI3-43BA-BED1-490C86705CERY, it
» Ethernet II, Src: VMware_39:e1:85 (88:0c:29:39:01:09), Dst: VMware_19:91:35 (88:8c:29:19:91:35)
Internet Protocol Version 4, Src: 192.168.8.15, Dst: 192.168.8.85
Transmission Control Protacal, Src Port: 33524, Dst Port: 445, Seq: 773, Ack: 1173, Len: 188
NetBIOS Session Service
SMBZ (Server Message Block Protocel version 2)
« SMB2 Header
Protocolld: BxfeS534d42
Header Length: 64
Credit Charge: 1
Channel Ssquence: @
Reserved: D8RR
Command: Write (9)
Credits requested: 127
» Flags: @x@20RR@8B, Signing
Chain Offset: Bxidaaa20
Message ID: 6
Process Id: Bx@dedanae
> Tree Id: B=RR@ed@dl \\192.168.0.B5\IPC%
» Session Id: oxB8@91000e020892d Acct: Domain: Hest:
Signature: acdSfaSccd74E8chiSfcoflelBlbTics

+ Write Request (8x@0)
» StructureSize: Bx8831
Data Offset: BwBOTA
Write Length: 72
File Offset: &
* GUID handle File: Llsarpc
Channel: None [@x0@020008
Remaining Bytes: @
» Write Flags: @x@@dao2ds
Blek 0ffset: Bx@edQeeeR
Bleb Length: @
Channel Info Blob: NO DATA
« Distributed Computing Environment / Remote Procedure Call (DCESRPC) Bind, Fragment: Single, Fraglen: 72, Call: 1
Versionm: 5
Version (minor): @
Packet type: Bind (11)
Packet Flags: @x@3
Data Representation: 10000088 [Order: Little-endian, Char: ASCII, Fleat: IEEE)
Frag Length: 72
Auth Length: @
Call ID: 1
Max Xmit Frag: 4288
Max Recv Frag: 42BB
Assoc Group: SxdIBBea8d
Num Ctx Items: 1
Citx Item[1l]: Context ID:@, EFS, 32bit NDR
Context ID: @
Hum Trans Items: 1
« Abstract Synmtax: EFS V1.8
Interface: EFS UUID: c681d4BB-dB50-11d0-Bc52-00cR4rdiefie
Interface Ver: 1
Interface Ver Minor: @
» Transfer Symtax([1]: 32bit NOR V2

el 83
o ad
d3 af
fe 53
a8 oa
aa aa
ac d3
31 e
df 12
ad aa
a5 ea
k8 1@
a8 da
21 oa rraRe e
2b 18

® E interfacs ULAD (doempocn_bind_to_uuid], 16 bytes Paciats: 3286 - splayed: 26 (0.8%) Prafile: Datault

Figure 2

Next, the attacker tells the victim that it wants to call the EfsRpcOpenFileRaw function, which
has the operation number 0. This is visible as the Opnum value on the line near the bottom
of Figure 3, again highlighted in blue.

7/11

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-efsr/ccc4fb75-1c86-41d7-bbc4-b278ec13bfb8

[W] £ UnPatchedDCOpenFileRaw. pcapng

F = 9 (] N =) =
AD A0 mBRBRBRE Ae2=E¢ R E QaQqal
N | dcerpe
Mo, | Tima Saurce Dastination | Pratocal | Length| info
1991 51.REBEY2 192.168.0.15 192.168.0.B5 Bind: call_id: 1, Fragment: Single; 1 context items: E-
1994 51.078487 192.168.0,.65 192.168.0.15 U Bind_a call_id: 1, Fragment: Single, max_wmit: 4280.
192.168.0.15 192.168.0. 85 EfsRpcOpenFileRaw reguest
192.1648.0.85 192.168.08.15 5 EfsRpcOpenFilefaw response, Error: WERR_BAD MNETPATH

1995: 278 bytes on wire (2224 bits), 278 bytes captured (2224 bits) on interface ‘\Device\NPF_{5SS8EBDCD-AFI3-43BA-BED1-4996867D5CRA), iv
» Ethernet II, Src: VMware_39:e1:85 (88:0c:29:39:01:09), Dst: VMware_19:91:35 (88:8c:29:19:91:35)
Internet Protocol Version 4, Src: 192.168.8.15, Dst: 192.168.8.85
Transmission Control Protacal, Src Port: 33534, Dst Port: 445, Seq: 1878, Ack: 1485, Len: 224
NetBIOS Session Service
SMBZ (Server Message Block Protocel version 2)
« SMB2 Header
Protocolld: BxfeS534d42
Header Length: 64
Credit Charge: 1
Channel Ssquence: @
Reserved: D8RR
Command: Write (9)
Credits requested: 127
» Flags: @x@20RR@8B, Signing
Chain Offset: Bxidaaa208
Message ID: 23
Process Id: Bx@dedanae
> Tree Id: B=RR@ed@dl \\192.168.0.B5\IPC%
» Session Id: oxB8@91000e020892d Acct: Domain: Host:
Signature: eflffafbfibBceddiiddciTeceeSTATAC

+ Write Request (8x@0)
» StructureSize: Bx8831
Data Offset: BwBOTA
Write Lemgth: 188
File Offset: &
* GUID handle File: Llsarpc
Channel: None [@x0@020008
Remaining Bytes: @
» Write Flags: @x@@dao2ds
Blek 0ffset: Bx@edQeeeR
Bleb Length: @
Channel Info Blob: NO DATA
« bistributed Computing Environment / Aemote Procedure Call (DCE/RPC) Request, Fragment: Single, Fraglem: 188, Call: 1, Ctx: @, [Resp: #3042]
Versionm: 5
Version (minor): @
Packet type: Regquest (@)
Packet Flags: @x@3
Data Representation: 10000088 [Order: Little-endian, Char: ASCII, Fleat: IEEE)
Frag Length: 198
Auth Length: @
Call ID: 1
Alloc hint: 84
Context ID: @
Dpnum: @
Complete stub data [84 bytes)
« EFS (pidl), EfsApcOpenFileRaw: “W192.168.0.15\test\Settings.ini
Dperation: EfsRpoOpenFileRsw (@)

Max Count: 33

offset: @

Actual Count: 33

FileName: 13192.168.8.15\test\Settings. ini
Flags: @

® E Opnum (deerpespnum), 2 bytes Paciats: 3286 - splayed: 26 (0.8%) Prafile: Datault

Figure 3

Finally, when the victim host has finished executing the EfsRpcOpenFileRaw function, it
sends back a response with a return value, which in this case is 0x00000035 , per Figure 4.

[W] £ UnPatchedBEOpenFiletaw. pcapng

AD 40 mEERR Res2EF ¢ B @ @

N | dcerpe

No. | Tima Saurce Destination | Pratocol | Lengtt| info
1991 51.@86BBT2 192.168.8.15 192.168.8. 85 Bind: call_id: 1, Fragment: Single, 1 context items: E_
1334 51.078407 192.168.0. 65 192.168.0.15 Bind_ack: call_id: 1, Fragment: Single, max_wmit: 4Z60.
1995 51.873268 152.168.0.15 152.168. 0. B5 EfsRpcdpenFileRaw request
2047 52.956428 152.168.08.85 192.168.8.15 EFS. 1BE EfsRpcOpenFileflaw response, Error: WERR_BAD_METPATH

Frame 2042: 186 bytes on wire (1488 bits), 186 bytes captured (1488 bits) on interface \Device\NPF_{S586BDCO-AFII-43B8A-BED1-4996867D5CB), i
Ethernet II, Src: VMware_f9:51:35 (@9:0c:29:19:91:35), Dst: WWware_39:01:09 (@0:0c:29:39:01:09)
Internet Protocol Yersien 4, Srei 192.168.0.85, Dst: 192.168.0.15
Transmiszion Control Protacol, Src Port: 445, Dst Port: 33524, Seq: 1569, Ack: 1419, Len: 132
NetBIOS Session Service
SMBZ (Server Message Bleck Protecel versien 2)
« SMB2 Header

ProtocolTd: @xfe534d42

Header Length: 64

Credit Charge: 16

NT Status: STATUS_SUCCESS (@xR@2028ed)

Comnand: Read (8]

Credits granmted: @

Flags: @x00dpeddb, Response, Async command, Signing

Chain Offset: @xedaaaden

HMessage ID: 24

Async Id: Qxopodeddadopodddd

Session Id: GwBdedld@dcddadd?d Acct: Domain:

Signature: 5Bb5c2TbERbbd2dd7561d6c2DcIDTELD

[Time from reguest: 1.628888488 seconds]
< Read Response (@xBB)
» BtructuresSize: @x0811
Data Offset: BuwddSa
Read Length: 48
Read Remaining: @
Reserved: 00022889
« Distributed Computing Environment / Remote Procedure Call (DCE/RPC) Response, Fragment: Single, Fraglen: 48, Call: 1, Ctx: @, [Reqg: #1335]
Versionm: 5
Version (minor): @
Packet type: Response {2)
Packest Flags: @x@3
* Data Representation: 19088888 (Order: Little-endian, Char: ASCIT, Float: IEEE)
Frag Length: 48
Auth Length: @
Call mp: 1
Alloc hint: 24
Context ID: @
Cancel count: @
[Opnum: @]

[Time from request: 1.823152088 seconds]
Complete stub data (24 bytes)

- EFS {pidl), EfsApcOpenFilefaw
Operation: EfsRpcOpenFileRaw (8]

Pointer to PvContext (policy handle)
Windows Error: WERR_BAD_NETPATH (@x20200835)

® B windows Error (efswerror), 4 bytes Pacints: 3286 - Tsplayed: 26 (0.8%) Frofile: Dafault

Figure 4

The only guarantees offered by DCERPC are that these three calls will be in that order within
a single SMB session. There may be other function calls and responses interspersed
between them which could result in the different stages of the PetitPotam exploit being more
broadly spread across an SMB session and intermixed with other, legitimate, SMB
operations.

Zeek, however, takes care of keeping track of the state of each DCERPC bind, function call,

and response for us out of the box. By the time the response to the function call is finally

seen on the network, Zeek has bundled up all of this information for us in
c$dce_rpc_backing . See Figure 5.

dce rpc backing={
[34359743200] = [
info=[
ts=1630594390.076173,
uid=CPQgUed4il9bDTvuTld,
id=[orig h=192.168.0.15, orig p=33524/tcp,
resp h=192.168.0.85, resp p=445/tcp],
rtt=1.0 sec 23.0 msecs 151.874542 usecs,
named pipe=‘pipe\lsass,
endpeoint=efsrpc?,
operation=EfsRpcOpenFileRaw
],
state=|
uuid=c681d488-dB850-11d40-8Bc52-00c04£d90£7e,
named_pipe=\pipe\lsass,
ctx_to_uuid=({
[0] = c681d488-d850-11d0-8c52-00c04£d90£7e
}

Figure 5

The only part still missing is the index number (34359743200), which is the reference
number for the open DCERPC call associated with this response. Zeek again takes care of
the tracking details for us by passing this value to the dce rpc_response event as the value
of the argument fid .

We now have everything we need to detect attempts to trigger a PetitPotam exploit. Since
Zeek has taken care of the task of tracking and collecting information through the lifetime of
the DCERPC session, we only need to capture DCERPC response events by writing a

10/11

https://docs.zeek.org/en/v4.1.0/scripts/base/bif/plugins/Zeek_DCE_RPC.events.bif.zeek.html#id-dce_rpc_response

handler for the dce rpc response stub event. Using the fid argument passed into the
event handler, we can extract the DCERPC endpoint UUID, and the name of the function
called from the saved state. Then, by comparing the DCERPC endpoint against those that
are abused by the PetitPotam exploits, and by examining the function’s return code we will
notify the analysts in near real time that a possible exploit attempt has occurred and whether
it appears to have been successful or not.

By Paul Dokas, Director of Corelight Labs

11/11

https://docs.zeek.org/en/v4.1.0/scripts/base/bif/plugins/Zeek_DCE_RPC.events.bif.zeek.html#id-dce_rpc_response_stub

