Scanning VirusTotal's firehose

skyblue.team/posts/scanning-virustotal-firehose/

Sep 21, 2021 - 584 words - 3 minute read

Let’'s say one of your adversaries is known for using a given malware family, custom or off-
the shelf. Even if the coverage is biased and limited, samples on VirusTotal (VT) are the low-
hanging fruits that keep on giving.

At SWORK, we are lucky to have access to the Virus Total feeds/file API. This APl endpoint
is the firehose of VirusTotal: it allows downloading each sample submitted to VT in pseudo-
real-time. The feed is unfiltered (we are not talking about VT’s LiveHunt feature) so the
volume is HUGE.

We set the crazy objective to extract and push IOC in real-time for a given malware
family submitted to VirusTotal. For this blog post, as an example, we will focus on Cobalt
Strike.

The steps are:

cobaltstrike-config-extractor

> VirusTotaI—»Hl_..]al‘a—-P _'M#

vtfeed-yarascanner

<

Email

1. Download each sample submitted

2. Apply Yara rules matching the malware families we are interested in
3. Automatically extract C2 configuration

4. Disseminate |OC

Initially, we used our on-premises infrastructure with 2-3 servers. Quickly, the operational
maintenance killed us:

o Our Celery cluster was regularly KO.

o Everything had to be very carefully tuned (memory limits, batch size, timeout, retries),
we were constantly juggling with the balance between completeness, stability, and
speed.

o Adding an under-performing Yara rule could break the platform.

It was also not a good use of our computing resources as VT’s activity is not evenly
spread across the day: our servers were under-used most of the day while overloaded
during the peaks.

1/3

https://skyblue.team/posts/scanning-virustotal-firehose/
https://developers.virustotal.com/reference#files-2
https://support.virustotal.com/hc/en-us/articles/360001315437-Livehunt
https://github.com/celery/celery/

Going Serverless ___

Taking a step back, it jumped out at us that this was a textbook example for a Serverless
architecture. It was easy to refactor our on-prem code into self-contained functions and glue
them together with Amazon SQS:

s

Amazon GetObject
vtfeed_refresher vtfeed_Jarascanner S3

vtfeed-yarascanner-topic vtfeed-matches-queue cobaltstrike_config_extrfator

lli m_‘ll\l\ = = E] g lll S %l !
—
Scheduled Amazon Amazon

SNS AWS Lambda

Amazon
Event AWS Uambda S0 SNS AWS Lambda A';‘KSO”

vtfeed-matches-topic
cobaltstrike_config_extractor

K AWS cloud

| |
Download
Sample

i feeds/fi Iesl(time)-»;’ tota IJ

index="beacon_hunting"

L
Execute @
e Tson e Splunk Alert &

Server Email
cs_config_listener.py

K On premise

The platform has been running smoothly for 18 months, and from an operational point of
view, we love it:

o The scalability of the platform allowed us to not mind anymore about the performance
of each rule: we can add our Yara rules quite freely instead of cherry-picking and
evaluating carefully each addition.

e SQS handles the whole retry mechanism.

» Adding a new dissector is as easy as plugging a new Lambda function to the Amazon
Simple Notification Service (SNS) topic.

o Everything is decoupled, it is easy to update one part without touching the rest.

o Each new release of libyara increases its performance and it is directly correlated to
the execution duration’s average.

e Everything is instrumented, we learned to love the AWS Monitoring_Console.

Performance Stats ___

For those who like numbers, here is a screenshot of the activity of the last 6 months:

2/3

https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/
https://aws.amazon.com/console/

Invocations ¢ | Duration ¢ Error count and success rate (%) i | Concurrent executions
Count Wilissconds Count Awuneuite | Count

104k 202 a7ek 100 163
Ppsvvor i
525K 451k 1906 66.1 El
110 114 8 = 5 22
o831 1

o o o 1
® Invocations ® Duration Minimum Duration Average ® Duration Maximum ®cros [}

On average:

¢ A batch of samples is scanned in less than 30s

e There are always 45 Lambda functions running at any given time

» 97% of the executions are successful

o We send 150 samples per minute (before deduplication) to dissectors

CobaltStrike __
BEACON: 45.133.216.60,/push - 34e80ed6d3a779d765b2542876b248839261... 3:15PM
BEACON: 47.100.244.87,/push - 8f505a3e9ae9a790balabc63beed75c7b3ada... 12:05 PM
BEACON: 42.192.69.251,/pixel - 3¢34c5f16€26689c9cc0b40dc04fc47b369b0... 10:17 AM
BEACON: vmware.center,/w/index.php - 615ec1bca09c¢90e8c49bf944f4886e2... 9:51 AM
BEACON: 58.218.215.139,/s/ref=nb_sb_noss_1/167-3294888-0262949/field-... 9:51 AM
BEACON: 106.13.9.180,/__utm.gif - b009e2b3e5b607a9dc02d539f9dc9498bb... 9:51 AM
BEACON: service-bzckytxj-1305798057.sh.apigw.tencentcs.com,/api/_xll/Con... 9:51 AM
BEACON: 108.160.137.158,/dot.qgif - 0f9415ba450bc2200d6e1¢c503dda57¢12... 9:50 AM
BEACON: 47.112.227.200,/fwlink - 9bcf63d773900f2eab4b410f0a37f72e36e... 9:50 AM

We are using CobaltStrikeParser from Sentinel One to parse the beacons, then we are
sending the JSON output to our Splunk instance.

There are two uses of this data:

e Threat Hunting: tracking some Threat Actors
o Proactive protection: adding proactively the I0C to a watchlist in our scope

For Threat Hunting perspectives, we implement alerting for things like:

o Specific watermark identifiers

o Patterns in the C2 domain

e Non-standard values for some fields

o Use of some options or specific malleable profile

Regarding proactive Defense, there is currently no automatic pipeline to push the 10C into a
WatchList/DenyList for one reason: it is not uncommon to see trolling BEACONSs using
legitimate and “assumed safe” domains. To mitigate that, we plan to have a kind of
Slack/Mattermost bot that will make us approve each entry seamlessly.

3/3

https://github.com/Sentinel-One/CobaltStrikeParser
https://www.sentinelone.com/

