
1/3

Scanning VirusTotal's firehose
skyblue.team/posts/scanning-virustotal-firehose/

Sep 21, 2021 · 584 words · 3 minute read

Let’s say one of your adversaries is known for using a given malware family, custom or off-
the shelf. Even if the coverage is biased and limited, samples on VirusTotal (VT) are the low-
hanging fruits that keep on giving.

At $WORK, we are lucky to have access to the Virus Total feeds/file API. This API endpoint
is the firehose of VirusTotal: it allows downloading each sample submitted to VT in pseudo-
real-time. The feed is unfiltered (we are not talking about VT’s LiveHunt feature) so the
volume is HUGE.

We set the crazy objective to extract and push IOC in real-time for a given malware
family submitted to VirusTotal. For this blog post, as an example, we will focus on Cobalt
Strike.

The steps are:

1. Download each sample submitted
2. Apply Yara rules matching the malware families we are interested in
3. Automatically extract C2 configuration
4. Disseminate IOC

Initially, we used our on-premises infrastructure with 2-3 servers. Quickly, the operational
maintenance killed us:

Our Celery cluster was regularly KO.
Everything had to be very carefully tuned (memory limits, batch size, timeout, retries),
we were constantly juggling with the balance between completeness, stability, and
speed.
Adding an under-performing Yara rule could break the platform.
It was also not a good use of our computing resources as VT’s activity is not evenly
spread across the day: our servers were under-used most of the day while overloaded
during the peaks.

https://skyblue.team/posts/scanning-virustotal-firehose/
https://developers.virustotal.com/reference#files-2
https://support.virustotal.com/hc/en-us/articles/360001315437-Livehunt
https://github.com/celery/celery/

2/3

Going Serverless 🔗

Taking a step back, it jumped out at us that this was a textbook example for a Serverless
architecture. It was easy to refactor our on-prem code into self-contained functions and glue
them together with Amazon SQS:

The platform has been running smoothly for 18 months, and from an operational point of
view, we love it:

The scalability of the platform allowed us to not mind anymore about the performance
of each rule: we can add our Yara rules quite freely instead of cherry-picking and
evaluating carefully each addition.
SQS handles the whole retry mechanism.
Adding a new dissector is as easy as plugging a new Lambda function to the Amazon
Simple Notification Service (SNS) topic.
Everything is decoupled, it is easy to update one part without touching the rest.
Each new release of libyara increases its performance and it is directly correlated to
the execution duration’s average.
Everything is instrumented, we learned to love the AWS Monitoring Console.

Performance Stats 🔗

For those who like numbers, here is a screenshot of the activity of the last 6 months:

https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/
https://aws.amazon.com/console/

3/3

On average:

A batch of samples is scanned in less than 30s
There are always 45 Lambda functions running at any given time
97% of the executions are successful
We send 150 samples per minute (before deduplication) to dissectors

CobaltStrike 🔗

We are using CobaltStrikeParser from Sentinel One to parse the beacons, then we are
sending the JSON output to our Splunk instance.

There are two uses of this data:

Threat Hunting: tracking some Threat Actors
Proactive protection: adding proactively the IOC to a watchlist in our scope

For Threat Hunting perspectives, we implement alerting for things like:

Specific watermark identifiers
Patterns in the C2 domain
Non-standard values for some fields
Use of some options or specific malleable profile

Regarding proactive Defense, there is currently no automatic pipeline to push the IOC into a
WatchList/DenyList for one reason: it is not uncommon to see trolling BEACONs using
legitimate and “assumed safe” domains. To mitigate that, we plan to have a kind of
Slack/Mattermost bot that will make us approve each entry seamlessly.

https://github.com/Sentinel-One/CobaltStrikeParser
https://www.sentinelone.com/

