
1/13

By September 21, 2021

BlackMatter Ransomware Technical Analysis and Tools from Nozomi Networks Labs
nozominetworks.com/blog/blackmatter-ransomware-technical-analysis-and-tools-from-nozomi-networks-labs/

Over the last weekend, Iowa-based NEW Cooperative Inc. was the latest victim of the ransomware group BlackMatter. According to the
company, which operates as a farmers’ cooperative, the incident has been actively handled, but at the time of this writing the full impact of the
attack is not clear.
In the media inquiries section of its website, BlackMatter explicitly lists a series of critical infrastructure targets that should not be targeted by its
malicious operations. An organization the size of NEW Cooperative could very well be categorized as critical infrastructure. If that’s the case,
this attack could have significant consequences. Modern supply chains are sometimes found to be vulnerable to sudden disruptions, with the
full effects often understood only much later.

In this blog, we describe the process that Nozomi Networks Labs took to analyze the BlackMatter ransomware executable, as well as ways the
malware hinders analysis, and how we were able to overcome them. We provide some scripts that can help other researchers extract key
information from other instances of this ransomware that surface in the wild.

An Iowa-based farmers’ cooperative was hit by BlackMatter ransomware. Nozomi Networks Labs analyzes the executable.

Main Functionality

The ransomware encrypts victims’ files with a version of the ChaCha20 and RSA algorithms. RSA is used to ensure that decryption is not
possible without the private key stored on the attackers’ side. The malware leaves a note in the form of a README file with the steps to follow
to decrypt them. In addition, it changes the wallpaper to bring attention to them:

https://www.nozominetworks.com/blog/blackmatter-ransomware-technical-analysis-and-tools-from-nozomi-networks-labs/
https://www.newcoop.com/

2/13

Wallpaper changed by the BlackMatter ransomware executable, drawing attention to a README file with decryption steps.
 (Click to enlarge)

In addition, the malware performs various common ransomware actions such as:
Deleting shadow copies (local backups) by first listing them using WMI query SELECT * FROM Win32_ShadowCopy
Deleting files in the recycle bin
Terminating processes and services specified in the configuration
Changing the wallpaper to point to the README text file for decryption instructions
Elevation:Administrator!new:{3E5FC7F9-9A51-4367-9063-A120244FBEC7} is used for UAC (user account control) bypass

Encrypted files will get a new file extension matching the victim id seen in the README file name prefix and also stored in the registry.
This victim id is derived from the MachineGuid registry value.

Anti-debugging Techniques

The malware attempts to thwart analysis by hiding which WinAPIs it relies on. To circumvent this, the malware resolves some of the required
import functions by their hashes:

https://www.nozominetworks.com/wp-content/uploads/2021/09/ransom_note.png
https://www.nozominetworks.com/wp-content/uploads/2021/09/ransom_desktop.png

3/13

Identification of WinAPI function by hashed name
To further complicate analysis, in case of bulk WinAPI address resolution by hashes, the malware uses a unique way of storing the addresses
found. Instead of just storing them in a table, for every resolved WinAPI address, it randomly chooses one of five different ways to encode it
(rol, ror, xor, xor+rol or xor+ror) and stores the encoded address together with a dynamically built code snippet that will decode it just before
the call:

Building code snippets to dynamically decrypt each API address and transfer control to it
Here is one of the result proxy code snippets:

Dynamically built code snippet to call the API
Another anti-debugging trick used by malware is checking the presence of the 0xABABABAB sequence at the end of private heap blocks that it
allocates to store these snippets. If the debugger is attached, this sequence will be added and the malware won’t store the address of the
snippet in its custom import table, which will later result in the debugged sample crashing.

https://www.nozominetworks.com/wp-content/uploads/2021/09/anti_debugging.png
https://www.nozominetworks.com/wp-content/uploads/2021/09/dynamic_decrypt.png
https://www.nozominetworks.com/wp-content/uploads/2021/09/dynamc_api.png

4/13

Malware checks for the presence of the 0xABABABAB sequence revealing the debugger
The strings are commonly decrypted on the fly, just before being used:

With the help of IDAPython functionality, it is possible to automatically find and decrypt most of them:

https://www.nozominetworks.com/wp-content/uploads/2021/09/heap_ababab.png
https://www.nozominetworks.com/wp-content/uploads/2021/09/dynamic_api_2.png

5/13

Here are some of the most important decrypted strings we pulled from the ransomware sample (see the script used below):
SOFTWARE\Microsoft\Cryptography
MachineGuid
__ProviderArchitecture
ROOT\CIMV2
ID
SELECT * FROM Win32_ShadowCopy
WQL
Win32_ShadowCopy.ID='%s'
Global\%.8x%.8x%.8x%.8x
Times New Roman
.bmp
Control Panel\Desktop
WallPaper
WallpaperStyle
Z:\
dllhost.exe
Elevation:Administrator!new:{3E5FC7F9-9A51-4367-9063-A120244FBEC7}
%s.README.txt
Control Panel\International
LocaleName
sLanguage
SOFTWARE\Microsoft\Windows NT\CurrentVersion
ProductName
%.8x%.8x%.8x%.8x%
POST
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
%s=%s
%s=%s
%.8x%.8x%.8x%.8x%
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
%u.%u
%u.%u
\\%s\
LDAP://rootDSE
defaultNamingContext

https://www.nozominetworks.com/wp-content/uploads/2021/09/automatic_decrypt.png

6/13

LDAP://CN=Computers,
dNSHostName
\\%s\
ExchangeInstallPath
Program Files
Mailbox
SOFTWARE\%s
hScreen

Configuration

The sample’s encrypted configuration is stored in the .rsrc section, additionally compressed, and the individual fields are base64-encoded. The
decrypted C2 configuration can be seen below. The sample can interact with both plain HTTP and HTTPS endpoints as evidenced by the set
of C2.

Configuration decryption and base64-encoded C2
Malware generates random HTTP query values when it communicates with these C2:

Network communication with one of the C2
To secure communication, the AES algorithm is used.

https://www.nozominetworks.com/wp-content/uploads/2021/09/c2_decryption.png
https://www.nozominetworks.com/wp-content/uploads/2021/09/wireshark_c2.png

7/13

Details of the targeted system in plaintext
Here is the extracted configuration:
{
 "SHA256_SAMPLE": "706F3EEC328E91FF7F66C8F0A2FB9B556325C153A329A2062DC85879C540839D",
 "RSA_KEY":
 "232FBA5316E1C9A3F0E603EF0ECB534A1FC1E8BA5F89DBD886D98FBF88EEDDE66CC65E00BBB827CD0262B65C505D95A008C48427A73AE6EB888EB4
 "COMPANY_VICTIM_ID": "90A881FFA127B004CEC6802588FCE307",
 "AES_KEY": "B59C952C492BD3D1F8F5140AA2855CDE",
 "BOT_MALWARE_VERSION": "2.0",
 "ODD_CRYPT_LARGE_FILES": "false",
 "NEED_MAKE_LOGON": "true",
 "MOUNT_UNITS_AND_CRYPT": "true",
 "CRYPT_NETWORK_RESOURCES_AND_AD": "true",
 "TERMINATE_PROCESSES": "true",
 "STOP_SERVICES_AND_DELETE": "true",
 "CREATE_MUTEX": "true",
 "PREPARE_VICTIM_DATA_AND_SEND": "true",
 "PRINT_RANSOM_NOTE": "true",
 "PROCESS_TO_KILL": [{
 "": "encsvc"
 }, {
 "": "thebat"
 }, {
 "": "mydesktopqos"
 }, {
 "": "xfssvccon"
 }, {
 "": "firefox"
 }, {
 "": "infopath"
 }, {
 "": "winword"
 }, {
 "": "steam"
 }, {
 "": "synctime"

https://www.nozominetworks.com/wp-content/uploads/2021/09/c2_aes.png

8/13

 }, {
 "": "notepad"
 }, {
 "": "ocomm"
 }, {
 "": "onenote"
 }, {
 "": "mspub"
 }, {
 "": "thunderbird"
 }, {
 "": "agntsvc"
 }, {
 "": "sql"
 }, {
 "": "excel"
 }, {
 "": "powerpnt"
 }, {
 "": "outlook"
 }, {
 "": "wordpad"
 }, {
 "": "dbeng50"
 }, {
 "": "isqlplussvc"
 }, {
 "": "sqbcoreservice"
 }, {
 "": "oracle"
 }, {
 "": "ocautoupds"
 }, {
 "": "dbsnmp"
 }, {
 "": "msaccess"
 }, {
 "": "tbirdconfig"
 }, {
 "": "ocssd"
 }, {
 "": "mydesktopservice"
 }, {
 "": "visio"
 }],
 "SERVICES_TO_KILL": [{
 "": "mepocs"
 }, {
 "": "memtas"
 }, {
 "": "veeam"
 }, {
 "": "svc$"
 }, {
 "": "backup"
 }, {
 "": "sql"
 }, {
 "": "vss"
 }, {
 "": "msexchange"
 }],
 "C2_URLS": [{
 "": "https://mojobiden[.]com"
 }, {
 "": "http://mojobiden[.]com"
 }, {
 "": "https://nowautomation[.]com"
 }, {
 "": "http://nowautomation[.]com"

9/13

 }],
 "LOGON_USERS_INFORMATION": [{
 "": "<redacted>"
 }, {
 "": "<redacted>"
 }, {
 "": "<redacted>"
 }, {
 "": "<redacted>"
 }, {
 "": "<redacted>"
 }, {
 "": "<redacted>"
 }],
 "RANSOM_NOTE": [{
 "": " ~+ \r\n * +\r\n
 ' BLACK |\r\n () .-.,='``'=. - o - \r\n '=/_ \\ |
\r\n * | '=._ | \r\n \\ `=./`, ' \r\n . '=.__.=' `='
 *\r\n + Matter +\r\n O * ' .\r\n\r\n>>> What happens?\r\n Your
network is encrypted, and currently not operational. \r\n We need only money, after payment we will give you a
decryptor for the entire network and you will restore all the data.\r\n\r\n>>> What data stolen?\r\n From your
network was stolen 1000 GB of data.\r\n If you do not contact us we will publish all your data in our blog and will
send it to the biggest mass media.\r\n Blog post link: http://<redacted>.onion/<redacted>\r\n\r\n>>> What
guarantees? \r\n We are not a politically motivated group and we do not need anything other than your money. \r\n
If you pay, we will provide you the programs for decryption and we will delete your data. \r\n If we do not give
you decrypters or we do not delete your data, no one will pay us in the future, this does not comply with our goals.
\r\n We always keep our promises.\r\n\r\n>> How to contact with us? \r\n 1. Download and install TOR Browser
(https://www.torproject.org/).\r\n 2. Open http://<redacted>.onion/<redacted>\r\n \r\n>> Warning! Recovery
recommendations. \r\n We strongly recommend you to do not MODIFY or REPAIR your files, that will damage them."
 }]
}

Overall, there are multiple similarities with the DarkSide ransomware family, including the way the victim id is derived from the MachineGuid
value, the encryption techniques used, and the way the configuration is structured and protected. More information on the DarkSide executable
can be found in our previous blog.

BlackMatter Ransomware Protection and Indicators of Compromise

Nozomi Networks customers using our Threat Intelligence service are already covered against the described threat. In addition, Nozomi
Networks Labs is monitoring this situation as it evolves and will extend coverage to customers and keep the community informed of major
updates.

For security professionals defending critical infrastructure operations, general recommendations for cyber resiliency against ransomware is
found in our latest OT/IoT Security Report.

For security researchers, the descriptions provided in this blog of how BlackMatter evades analysis, and how to extract key information from
the code should be useful as the malware evolves.

The indicators of compromise (IOC) that we learned from this analysis, as well as the scripts we used in the analysis are found below.

List of IOCs
mojobiden.com
nowautomation.com
706f3eec328e91ff7f66c8f0a2fb9b556325c153a329a2062dc85879c540839d
// Created by Nozomi Networks Labs
import "pe"
rule blackmatter_ransomware : blackmatter ransomware {
 meta:
 date = "2021-09-20"
 name = "BlackMatter - RANSOMWARE"
 author = "Nozomi Networks Labs"
 description = "Generic detection for BlackMatter ransomware"
 actor = "BlackMatter"
 x_threat_name = "BlackMatter ransomware"
 x_mitre_technique = "T1486"
 hash1 = "706f3eec328e91ff7f66c8f0a2fb9b556325c153a329a2062dc85879c540839d"
 hash2 = "9cf9441554ac727f9d191ad9de1dc101867ffe5264699cafcf2734a4b89d5d6a"
 hash3 = "b0e929e35c47a60f65e4420389cad46190c26e8cfaabe922efd73747b682776a"
 hash4 = "2cdb5edf3039863c30818ca34d9240cb0068ad33128895500721bcdca70c78fd"
 hash5 = "f7b3da61cb6a37569270554776dbbd1406d7203718c0419c922aa393c07e9884"

https://www.nozominetworks.com/blog/colonial-pipeline-ransomware-attack-revealing-how-darkside-works/
https://www.nozominetworks.com/ot-iot-security-report/

10/13

 hash6 = "8f1b0affffb2f2f58b477515d1ce54f4daa40a761d828041603d5536c2d53539"
 hash7 = "e4a2260bcba8059207fdcc2d59841a8c4ddbe39b6b835feef671bceb95cd232d"
 nn_ts = "1632088800.0"
 nn_sig = "f7c69f3b527ffb3f0c2aa613e902d8d4f0e39966048bb6cfa57556115fa18ed9"
 nn_id = "92f90d15-9392-4076-96b5-1e42ac9874c5"
 condition:
 uint16(0)==0x5a4d and uint32(uint32(0x3c))==0x00004550 and filesize <100KB and
pe.imphash()=="2e4ae81fc349a1616df79a6f5499743f"
}

IDAPython Scripts

Here is a script to restore the custom import table dynamically populated by malware. It defines the new hotkey Z that should be pressed when
the cursor is located at the bulk decryption function (in case of this sample, at the RVA 0x78EC).

Author: Alexey Kleymenov (a member of Nozomi Networks Labs)
import os
import struct
import pefile
import ida_kernwin
PATH_TO_DLLS = 'c:\\windows\\system32\\'
HARDCODED_XOR_KEY = 0x17019FF8
def extract_api_hashes(start):
 '''
 Returns a dictionary where keys are import functions to write data and values are list of hashes
 The first hash is the DLL name's hash, the rest are WinAPI names' hashes
 '''
 decryptor_address = start
 print('Bulk API decryptor address: %x' % decryptor_address)
 api_hashes = {}
 for head in Heads():
 flags = GetFlags(head)
 if isCode(flags):
 prev = prev_head(head)
 prev_2 = prev_head(prev)
 if print_insn_mnem(head) == 'call' and get_operand_value(head, 0) == decryptor_address:
 print('Found the decryptor called: %x' % head)
 if print_insn_mnem(prev) == 'push' and print_insn_mnem(prev_2) == 'push':
 func_hashes = get_operand_value(prev_2, 0)
 import_table = get_operand_value(prev, 0)
 api_hashes[import_table] = []
 for i in range(0, 0xffff, 4):
 api_hash = struct.unpack("<I", get_bytes(func_hashes + i, 4))[0]
 if api_hash == 0xCCCCCCCC:
 break
 else:
 api_hashes[import_table].append(api_hash ^ HARDCODED_XOR_KEY)
 else:
 print('Non-standard arguments %x' % head)
 return api_hashes
def calculate_checksum(name, value):
 '''
 Standard ror 0x0D
 '''
 for symbol in name:
 value = ((value >> 0x0D) | (value << (0x20 - 0x0D))) & 0xFFFFFFFF
 value += ord(symbol) & 0xFFFFFFFF
 return value
def build_mappings(dll_filepath, dll_hashes):
 '''
 This function calculates API checksums for the DLLs of interest
 '''
 dll_name = os.path.basename(dll_filepath)
 dll_checksum = calculate_checksum(dll_name.lower() + '\x00', 0)
 result = {}
 if dll_checksum in dll_hashes:
 dll = pefile.PE(dll_filepath, fast_load=True)
 dll.parse_data_directories(directories=[pefile.DIRECTORY_ENTRY['IMAGE_DIRECTORY_ENTRY_EXPORT']])
 if hasattr(dll, 'DIRECTORY_ENTRY_EXPORT'):
 dll_name = dll_name.replace('.', '_')

11/13

 result[dll_checksum] = {'dll_name': dll_name}
 export_directory = dll.DIRECTORY_ENTRY_EXPORT
 for symbol in export_directory.symbols:
 if symbol.name is not None:
 api_name = symbol.name.decode('latin-1')
 api_checksum = calculate_checksum(api_name + '\x00', dll_checksum)
 result[api_checksum] = {'dll_name': dll_name, 'api_name': api_name}
 return result
def parse_dlls(path_to_dlls, dll_hashes):
 '''
 This function goes through all the files in the specified path and calculates export hashes for DLLs matching by
name hashes
 '''
 list_dlls = os.listdir(path_to_dlls)
 mappings = {}
 for dll_filename in list_dlls:
 full_path = os.path.join(path_to_dlls, dll_filename)
 mappings.update(build_mappings(full_path, dll_hashes))
 return mappings
def decrypt_all():
 '''
 The function expects the cursor to be located at the bulk decryption function
 '''
 start = get_screen_ea()
 api_hashes = extract_api_hashes(start)
 dll_hashes = []
 for _, hashes in api_hashes.items():
 dll_hashes.append(hashes[0])
 dll_mappings = parse_dlls(PATH_TO_DLLS, dll_hashes)
 for import_table, hashes in api_hashes.items():
 dll_hash = hashes[0]
 api_hashes = hashes[1:]
 if dll_hash in dll_mappings:
 print('Found DLL hash %x = %s' % (dll_hash, dll_mappings[dll_hash]['dll_name']))
 for i, api_hash in enumerate(api_hashes):
 if api_hash in dll_mappings:
 addr = import_table + (i+1)*4
 print('Found API hash for %x = %s (%s)' % (addr, dll_mappings[api_hash]['api_name'],
dll_mappings[api_hash]['dll_name']))
 set_name(addr, dll_mappings[api_hash]['api_name'])
 else:
 print('API hash %x not found' % api_hash)
 else:
 print('DLL hash %x not found' % dll_hash)
ida_kernwin.add_hotkey("z", decrypt_all)

In addition, here is a script to automatically search for and decrypt most of the encrypted strings:
Author: Alexey Kleymenov (a member of Nozomi Networks Labs)
import struct
import ida_kernwin
HARDCODED_XOR_KEY = 0x17019FF8
def is_utf16_heur(string):
 counter = 0
 for val in string:
 if val == 0:
 counter += 1
 if counter/float(len(string)) > 0.4:
 return True
 return False
def decrypt_string(start_addr):
 addr = start_addr
 result = b""
 for i in range(0xFFFF):
 instr = print_insn_mnem(addr)
 if instr != 'mov' or 'dword ptr' not in GetDisasm(addr):
 break
 value = get_operand_value(addr, 1)
 decoded_value = value ^ HARDCODED_XOR_KEY
 result += struct.pack("<I", decoded_value)
 addr = next_head(addr)
 result_orig = result

12/13

 if is_utf16_heur(result):
 result = result.decode('utf-16le')
 else:
 result = result.decode('latin-1')
 if all(ord(c) < 128 for c in result):
 result = result.rstrip('\x00')
 else:
 result = 'hex: ' + result_orig.hex()
 print('%x - %s' % (start_addr, result))
 set_cmt(start_addr, result, 0)
def decrypt_string_manual():
 start_addr = get_screen_ea()
 decrypt_string(start_addr)
def search_for_encrypted_strings():
 for head in Heads():
 flags = GetFlags(head)
 if isCode(flags):
 if print_insn_mnem(head) == 'xor' and 'dword ptr' in GetDisasm(head) and get_operand_value(head, 1) ==
HARDCODED_XOR_KEY:
 next = next_head(head)
 if print_insn_mnem(next) == 'add' and get_operand_value(next, 1) == 4:
 prev = prev_head(head)
 if 'mov ecx' in GetDisasm(prev):
 num = get_operand_value(prev, 1)
 for i in range(num):
 prev = prev_head(prev)
 # print('Found the encryption string candidate: %x' % prev)
 decrypt_string(prev)
ida_kernwin.add_hotkey(",", decrypt_string_manual)
search_for_encrypted_strings()

Related Content

RESEARCH REPORT

OT/IoT Security Report

What You Need to Know to Fight Ransomware and IoT Vulnerabilities
 July 2021

Why ransomware is a formidable threat
Analysis of DarkSide, the malware that attacked Colonial Pipeline
Latest ICS and medical device vulnerability trends
Why P2P security camera architecture threatens confidentiality
How security cameras are vulnerable
Ten measures to take immediately to defend your systems

https://www.nozominetworks.com/ot-iot-security-report/
https://www.nozominetworks.com/ot-iot-security-report/

13/13

Download
Related Links

Blog: Colonial Pipeline Ransomware Attack: Revealing How DarkSide Works
Blog: Responding to the Colonial Pipeline Breach and CISA Ransomware Alert
Blog: OT and IoT Security: Adopt a Post-Breach Mindset Today
Blog: Hard Lessons from the Oldsmar Water Facility Cyberattack Hack
Executive Brief: The Cost of OT Cybersecurity Incidents and How to Reduce Risk
Executive Brief: Business Leaders Need to Quickly Shift Focus to Industrial Cybersecurity

Nozomi Networks Labs
Nozomi Networks Labs is dedicated to reducing cyber risk for the world’s industrial and critical infrastructure organizations. Through our
cybersecurity research and collaboration with industry and institutions, we’re helping defend the operational systems that support everyday life.

https://www.nozominetworks.com/ot-iot-security-report/
https://www.nozominetworks.com/blog/colonial-pipeline-ransomware-attack-revealing-how-darkside-works/
https://www.nozominetworks.com/blog/responding-to-the-colonial-pipeline-breach-cisa-ransomware-alert/
https://www.nozominetworks.com/blog/ot-and-iot-security-adopt-a-post-breach-mindset-today/
http://nozominetworks.com/blog/hard-lessons-from-the-oldsmar-water-facility-cyberattack-hack/
https://info.nozominetworks.com/executive-brief-cost-of-ot-cyber-incidents-lp-0
https://info.nozominetworks.com/executive-brief-business-leaders-shift-focus-lp
https://www.nozominetworks.com/author/nn-labs/

