BlackMatter Ransomware Technical Analysis and Tools from Nozomi Networks Labs

nozominetworks.com/blog/blackmatter-ransomware-technical-analysis-and-tools-from-nozomi-networks-labs/

September 21, 2021

Over the last weekend, lowa-based <u>NEW Cooperative Inc.</u> was the latest victim of the ransomware group BlackMatter. According to the company, which operates as a farmers' cooperative, the incident has been actively handled, but at the time of this writing the full impact of the attack is not clear.

In the media inquiries section of its website, BlackMatter explicitly lists a series of critical infrastructure targets that should not be targeted by its malicious operations. An organization the size of NEW Cooperative could very well be categorized as critical infrastructure. If that's the case, this attack could have significant consequences. Modern supply chains are sometimes found to be vulnerable to sudden disruptions, with the full effects often understood only much later.

In this blog, we describe the process that Nozomi Networks Labs took to analyze the BlackMatter ransomware executable, as well as ways the malware hinders analysis, and how we were able to overcome them. We provide some scripts that can help other researchers extract key information from other instances of this ransomware that surface in the wild.

An lowa-based farmers' cooperative was hit by BlackMatter ransomware. Nozomi Networks Labs analyzes the executable.

Main Functionality

Bу

The ransomware encrypts victims' files with a version of the ChaCha20 and RSA algorithms. RSA is used to ensure that decryption is not possible without the private key stored on the attackers' side. The malware leaves a note in the form of a README file with the steps to follow to decrypt them. In addition, it changes the wallpaper to bring attention to them:

z0MgYWEgQ.README.txt - Notepad

>>> What happens?

Your network is encrypted, and currently not operational. We need only money, after payment we will give you a decryptor for the entire network and you will restore all the data.

>>> What data stolen?

- From your network was stolen 1000 GB of data.
- If you do not contact us we will publish all your data in our blog and will send it to the biggest mass media.

Blog post link: Mite // Blog and a selection of the line of the li

>>> What guarantees?

- We are not a politically motivated group and we do not need anything other than your money.
- If you pay, we will provide you the programs for decryption and we will delete your data.
- If we do not give you decrypters or we do not delete your data, no one will pay us in the future, this does not comply with our goals. We always keep our promises.
- >> How to contact with us?
 - 1. Download and install TOR Browser (https://www.torproject.org/).
 - 2. Open

>> Warning! Recovery recommendations.

We strongly recommend you to do not MODIFY or REPAIR your files, that will damage them.

Wallpaper changed by the BlackMatter ransomware executable, drawing attention to a README file with decryption steps. (*Click to enlarge*)

In addition, the malware performs various common ransomware actions such as:

- Deleting shadow copies (local backups) by first listing them using WMI query SELECT * FROM Win32_ShadowCopy
- Deleting files in the recycle bin
- · Terminating processes and services specified in the configuration
- · Changing the wallpaper to point to the README text file for decryption instructions
- Elevation:Administrator!new:{3E5FC7F9-9A51-4367-9063-A120244FBEC7} is used for UAC (user account control) bypass
- Encrypted files will get a new file extension matching the victim id seen in the README file name prefix and also stored in the registry. This victim id is derived from the MachineGuid registry value.

Anti-debugging Techniques

The malware attempts to thwart analysis by hiding which WinAPIs it relies on. To circumvent this, the malware resolves some of the required import functions by their hashes:

- 🗆 🗙

	.text:00CF7DB0	resolve	_all_apis proc	near
	.text:00CF7DB0	push	esi	
	.text:00CF7DB1	push	edi	
	.text:00CF7DB2	mov	eax, 310A98BDh	
	text:00CE7DB7	xor	eax, 17019EE8h	
	text:00CE7DBC	nush	eav	
	text:00CE7DBD	call	get and by has	h
		Call	Bec_abr_by_has	
	.text:00CF7DC2	mov	esi, eax	
	.text:00CF7DC4	test	esi, esi	
	.text:00CF7DC6	jz	loc_CF7EFA	
-		بے سے		
	👪 🖆 🖼			
	.text:00CF7DCC push	0		
	text:00CE7DCE push	0		
	Cexe. occrybee push		- 1	
	.text:00CF7DD0 push	40000	øn	
	.text:00CF7DD5 call	esi	; H	eapCreate

Identification of WinAPI function by hashed name

To further complicate analysis, in case of bulk WinAPI address resolution by hashes, the malware uses a unique way of storing the addresses found. Instead of just storing them in a table, for every resolved WinAPI address, it randomly chooses one of five different ways to encode it (rol, ror, xor, xor+rol or xor+ror) and stores the encoded address together with a dynamically built code snippet that will decode it just before the call:

Building code snippets to dynamically decrypt each API address and transfer control to it Here is one of the result proxy code snippets:

B8	71	37	DD	C1	mov	eax,	0C1DD3771h
C1	C 0	06			rol	eax,	6
FF	E0				jmp	eax	

Dynamically built code snippet to call the API

Another anti-debugging trick used by malware is checking the presence of the 0xABABABAB sequence at the end of private heap blocks that it allocates to store these snippets. If the debugger is attached, this sequence will be added and the malware won't store the address of the snippet in its custom import table, which will later result in the debugged sample crashing.

With the help of IDAPython functionality, it is possible to automatically find and decrypt most of them:

Here are some of the most important decrypted strings we pulled from the ransomware sample (see the script used below):

ID SELECT * FROM Win32_ShadowCopy WQL Win32_ShadowCopy.ID='%s' Global\%.8x%.8x%.8x%.8x Times New Roman .bmp Control Panel\Desktop WallPaper WallpaperStyle Z:\ dllhost.exe %s.README.txt Control Panel\International LocaleName sLanguage SOFTWARE\Microsoft\Windows NT\CurrentVersion ProductName %.8x%.8x%.8x%.8x% POST ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 %s=%s %s=%s %.8x%.8x%.8x%.8x% ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 %u.%u %u.%u \\%s\ LDAP://rootDSE defaultNamingContext

LDAP://CN=Computers, dNSHostName \\%s\ ExchangeInstallPath Program Files Mailbox SOFTWARE\%s hScreen

Configuration

The sample's encrypted configuration is stored in the .rsrc section, additionally compressed, and the individual fields are base64-encoded. The decrypted C2 configuration can be seen below. The sample can interact with both plain HTTP and HTTPS endpoints as evidenced by the set of C2.

To secure communication, the AES algorithm is used.

	00550000	0000	and byce per dor [can];at	
0	00596A6F	40	inc eax	
	00596A70	0000	add byte ptr ds:[eax],al	
•	00596A72	0080 0000001B	add byte ptr ds:[eax+1B000000],al	
•	00596A78	0000	add byte ptr ds:[eax],al	
•	00596A7A	0036	add byte ptr ds:[es1],dh	
	00596A7C	55	push ebp	AES
EIP >0	00596A7D	SBEC	mov_ebp,esp	
•	00596A7F	56	push esi	
•	00596A80	57	push edi	
•	00596A81	53	push ebx	
•	00596A82	8B75 08	mov esi,dword ptr ss:[ebp+8]	
•	00596A85	BF 2C4B5A00	<pre>mov edi,706f3eec328e91ff7f66c8f0a2fb9b5</pre>	
•	00596A8A	8B06	mov eax, dword ptr ds:[esi]	
•	00596A8C	8B5E 04	mov ebx, dword ptr ds:[esi+4]	
•	00596A8F	8B4E 08	mov ecx.dword ptr ds:[esi+8]	
•	00596A92	8B56 0C	mov edx.dword ptr ds:[esi+C]	
•	00596A95	0FC8	bswap eax	
•	00596A97	OFCB	bswap ebx	
•	00596A99	0FC9	bswap ecx	
•	00596A9B	OFCA	bswap edx	
•	00596A9D	8907	mov dword ptr ds:[edi].eax	
•	00596A9F	895F 04	mov dword ptr ds:[edi+4].ebx	
•	00596AA2	894F 08	mov dword ptr ds:[edi+8].ecx	
•	00596AA5	8957 OC	mov dword ptr ds:[edi+C].edx	
	00596448	8B4D 0C	mov ecx.dword ptr ss:[ebp+C]	
0	00596AAB	83F9 18	CMD ecx.18	
	00596AAE	× 72 25	ib 706f3eec328e91ff7f66c8f0a2fb9b556325	
	00596AB0	8B46_10	mov_eax_dword_ptr_ds:[esi+10]	
	00596AB3	885E 14	mov ebx.dword ptr ds:[esi+14]	
	00596486	OEC 8	hswan eav	
	00596488	OFCB	hswap ehx	
	00596484	8947 10	mov dword otr ds:[edi+10] eav	
	005 96APD	895E 14	mov dword ptr ds.[edi+14] eby	
	00596460	8369 20	cmp ecv 20	2011
	00596400	72 10	in Theftaarttaanterffeerefnathaheeetate	201
ψΨ .	005 SGACS	72 10	JU 7001 SECS20EST117100C0104210505505250	

add byte otr dst[eav]

ebp=0287F710

.text:00596A7C 706f3eec328e91ff7f66c8f0a2fb9b556325c153a329a2062dc85879c540839d:\$6A7C #5E7C

Ump 🕄	1		Dur	mp 2			Dum	ip 3			Dump	4	ų,	U D	ump	5	👹 Watch 1	[x=] Loc	als	Struct			
Address	He	x															ASCII						
00CE0ED0	7B	OD	0A	22	62	6F	74	5F	76	65	72	73	69	6F	6E	22	<pre>{"bot_ver</pre>	sion"					
OOCEOEEO	3A	22	32	2E	30	22	2C	OD	0A	22	62	6F	74	SF	69	64	:"2.0","b	ot_id					
OOCEOEFO	22	ЗA	22	63	38	62	36	33	38	65	65	35	64	30	39	62	":"c8b638ee	5d09b					
00CE0F00	35	65	38	35	65	32	35	35	66	64	30	66	62	33	31	64	5e85e255fd0	fb31d					
00CE0F10	30	31	63	22	2C	OD	0A	22	62	6F	74	5 F	63	6F	GD	70	01c","bot	_comp					
00CE0F20	61	6E	79	22	3A	22	39	30	61	38	38	31	66	66	61	31	any": "90a88	1ffa1					
00CE0F30	32	37	62	30	30	34	63	65	63	36	38	30	32	35	38	38	27b004cec68	02588					
00CE0F40	66	63	65	33	30	37	22	2C	00	0A	22	68	6F	73	74	5F	fce307","	host_					
00CE0F50	68	6F	73	74	GE	61	GD	65	22	ЗA	22	44	45	53	4B	54	hostname":"	DESKT					
00CE0F60	4F	50	2D	52	36	54	50	56	4C	33	22	2C	OD	0A	22	68	OP-R6TPVL3"	,"h					
00CE0F70	6F	73	74	5 F	75	73	65	72	22	ЗA	22	41	64	6D	69	6E	ost_user":"	Admin					
00CE0F80	69	73	74	72	61	74	6F	72	22	2C	00	0A	22	68	6F	73	istrator",.	."hos					
00CE0F90	74	5 F	6F	73	22	ЗA	22	57	69	6E	64	6F	77	73	20	31	t_os":"Wind	ows 1					
00CE0FA0	30	20	50	72	6F	22	2C	OD	0A	22	68	6F	73	74	5 F	64	0 Pro","h	ost_d					
00CE0FB0	6F	GD	61	69	6E	22	ЗA	22	57	4F	52	4B	47	52	4F	55	omain":"WOR	KGROU					
00CE0FC0	50	22	2C	OD	0A	22	68	6F	73	74	5F	61	72	63	68	22	P","host_	arch"					
OOCEOFDO	3A	22	78	36	34	22	2C	OD	0A	22	68	6F	73	74	5F	6C	:"x64","h	ost_1					
00CE0FE0	61	6E	67	22	3A	22	65	6E	2D	55	53	22	2C	0D	0A	22	ang":"en-US						
OOCEOFFO	64	69	73	6B	73	5F	69	6E	66	6F	22	ЗA	5B	0D	0A	7B	disks_info"	:[{					
00CE1000	0D	0A	22	64	69	73	6B	5 F	6E	61	6D	65	22	ЗA	22	43	"disk_nam	e":"C					
00CE1010	22	2C	0D	0A	22	64	69	73	6B	5 F	73	69	7A	65	22	ЗA	","disk_s	1ze":					
00CE1020	22	36	30	39	33	37	22	2C	00	0A	22	66	72	65	65	5 F	"60937","	free_					
00CE1030	73	69	7A	65	22	3A	22	31	30	30	39	38	22	0D	0A	7D	size":"1009	8"}					
00CE1040	00	0A	5D	OD	0A	7D	00	00	00	00	00	00	00	00	00	00]}						

Details of the targeted system in plaintext

Here is the extracted configuration:

{

"SHA256_SAMPLE": "706F3EEC328E91FF7F66C8F0A2FB9B556325C153A329A2062DC85879C540839D",

"RSA_KEY": "232FBA5316E1C9A3F0E603EF0ECB534A1FC1E8BA5F89DBD886D98FBF88EEDDE66CC65E00BBB827CD0262B65C505D95A008C48427A73AE6EB888EB4 "COMPANY_VICTIM_ID": "90A881FFA127B004CEC6802588FCE307", "AFS_KEV": "859C952C492BD3D1E8E5140A42855CDE"

```
"AES_KEY": "B59C952C492BD3D1F8F5140AA2855CDE",
"BOT_MALWARE_VERSION":
                           "2.0",
"ODD_CRYPT_LARGE_FILES":
                               "false",
                         "true",
"NEED_MAKE_LOGON":
                              e",
"true",
-"· "true",
"MOUNT_UNITS_AND_CRYPT":
"CRYPT_NETWORK_RESOURCES_AND_AD":
"TERMINATE_PROCESSES":
                             "true",
"STOP_SERVICES_AND_DELETE":
                               "true",
"CREATE_MUTEX": "true",
"PREPARE_VICTIM_DATA_AND_SEND": "true",
"PRINT_RANSOM_NOTE":
                           "true",
"PROCESS_TO_KILL":
                          [{
                0.05
                           "encsvc"
        }, {
                0.0 ±
                           "thebat"
        }, {
                0.01.
                           "mydesktopqos"
        }, {
                           "xfssvccon"
        }, {
                           "firefox"
        }, {
                <u>и</u>п.
                           "infopath"
        }, {
                <u>и</u>п.,
                           "winword"
        }, {
                0.0.5
                           "steam"
        }, {
                           "synctime"
```

	},	{	"":	"notepad"
	},	{	"":	"ocomm"
	},	{	"":	"onenote"
	},	{	"":	"mspub"
	},	{	"":	"thunderbird"
	},	{	"":	"agntsvc"
	},	{	"":	"sql"
	},	{	"":	"excel"
	},	{	"":	"powerpnt"
	},	{	"":	"outlook"
	},	{	"":	"wordpad"
	},	{	"":	"dbeng50"
	},	{	"":	"isqlplussvc"
	},	{		"sqbcoreservice"
	},	{		"oracle"
	},	{		"ocautoupds"
	},	{		"dbsnmp"
	},	{		"msaccess"
	},	{	···:	"tbirdconfig"
	},	{		"ocssd"
	},	{		"mydesktopservice"
	},	{		"visio"
"SERVICE	}],	ο κτ	11.94	[[
OLIVIO	נ ו	۲ر ر	"":	"mepocs"
	יר ז	r r	"":	"memtas"
	ינ ו	ι Γ	"":	"veeam"
	<i>ו</i> ג ר	ι Γ	"":	"svc\$"
	<i>۲۱</i>	۱ ۲	"":	"backup"
	<i>31</i>	1	"":	"sql"
	37	{	"";	"VSS"
	},	ł	"":	"msexchange"
"C2_URLS	}], S":]]	
	},	{		"nttps://mojobiden[.]com"
	},	{	"":	"http://mojobiden[.]com"
	},	{	:	"https://nowautomation[.]com"
			⁰⁰ :	"http://nowautomation[.]com"

*\r\n + .\r\n\r\n>>> What happens?\r\n Matter +\r\n 0 Your network is encrypted, and currently not operational. \r\n We need only money, after payment we will give you a decryptor for the entire network and you will restore all the data.\r\n\r\n>>> What data stolen?\r\n From vour network was stolen 1000 GB of data.\r\n If you do not contact us we will publish all your data in our blog and will send it to the biggest mass media.\r\n Blog post link: http://<redacted>.onion/<redacted>\r\n\r\n>>> What guarantees? \r\n We are not a politically motivated group and we do not need anything other than your money. \r\n If you pay, we will provide you the programs for decryption and we will delete your data. \r\n If we do not give you decrypters or we do not delete your data, no one will pay us in the future, this does not comply with our goals. \r\n We always keep our promises.\r\n\r\n>> How to contact with us? \r\n 1. Download and install TOR Browser (https://www.torproject.org/).\r\n 2. Open http://<redacted>.onion/<redacted>\r\n \r\n>> Warning! Recovery recommendations. \r\n We strongly recommend you to do not MODIFY or REPAIR your files, that will damage them." }]

```
}
```

Overall, there are multiple similarities with the DarkSide ransomware family, including the way the victim id is derived from the MachineGuid value, the encryption techniques used, and the way the configuration is structured and protected. More information on the DarkSide executable can be found in <u>our previous blog</u>.

BlackMatter Ransomware Protection and Indicators of Compromise

Nozomi Networks customers using our Threat Intelligence service are already covered against the described threat. In addition, Nozomi Networks Labs is monitoring this situation as it evolves and will extend coverage to customers and keep the community informed of major updates.

For security professionals defending critical infrastructure operations, general recommendations for cyber resiliency against ransomware is found in our latest <u>OT/IoT Security Report</u>.

For security researchers, the descriptions provided in this blog of how BlackMatter evades analysis, and how to extract key information from the code should be useful as the malware evolves.

The indicators of compromise (IOC) that we learned from this analysis, as well as the scripts we used in the analysis are found below.

List of IOCs

```
moiobiden.com
nowautomation.com
706f3eec328e91ff7f66c8f0a2fb9b556325c153a329a2062dc85879c540839d
// Created by Nozomi Networks Labs
import "pe"
rule blackmatter_ransomware : blackmatter ransomware {
        meta:
                date = "2021-09-20"
                name = "BlackMatter - RANSOMWARE"
                author = "Nozomi Networks Labs"
                description = "Generic detection for BlackMatter ransomware"
                actor = "BlackMatter"
                x_threat_name = "BlackMatter ransomware"
                x_mitre_technique = "T1486"
                hash1 = "706f3eec328e91ff7f66c8f0a2fb9b556325c153a329a2062dc85879c540839d"
                hash2 = "9cf9441554ac727f9d191ad9de1dc101867ffe5264699cafcf2734a4b89d5d6a"
                hash3 = "b0e929e35c47a60f65e4420389cad46190c26e8cfaabe922efd73747b682776a"
                hash4 = "2cdb5edf3039863c30818ca34d9240cb0068ad33128895500721bcdca70c78fd"
                hash5 = "f7b3da61cb6a37569270554776dbbd1406d7203718c0419c922aa393c07e9884"
```

```
hash6 = "8f1b0affffb2f2f58b477515d1ce54f4daa40a761d828041603d5536c2d53539"
hash7 = "e4a2260bcba8059207fdcc2d59841a8c4ddbe39b6b835feef671bceb95cd232d"
nn_ts = "1632088800.0"
nn_sig = "f7c69f3b527ffb3f0c2aa613e902d8d4f0e39966048bb6cfa57556115fa18ed9"
nn_id = "92f90d15-9392-4076-96b5-1e42ac9874c5"
condition:
    uint16(0)==0x5a4d and uint32( uint32(0x3c))==0x00004550 and filesize <100KB and
pe.imphash()=="2e4ae81fc349a1616df79a6f5499743f"
```

}

IDAPython Scripts

Here is a script to restore the custom import table dynamically populated by malware. It defines the new hotkey Z that should be pressed when the cursor is located at the bulk decryption function (in case of this sample, at the RVA 0x78EC).

```
# Author: Alexey Kleymenov (a member of Nozomi Networks Labs)
import os
import struct
import pefile
import ida_kernwin
PATH_TO_DLLS = 'c:\\windows\\system32\\'
HARDCODED_XOR_KEY = 0x17019FF8
def extract_api_hashes(start):
    1.1.1
    Returns a dictionary where keys are import functions to write data and values are list of hashes
    The first hash is the DLL name's hash, the rest are WinAPI names' hashes
    decryptor_address = start
    print('Bulk API decryptor address: %x' % decryptor_address)
    api_hashes = {}
    for head in Heads():
        flags = GetFlags(head)
        if isCode(flags):
            prev = prev_head(head)
            prev_2 = prev_head(prev)
            if print_insn_mnem(head) == 'call' and get_operand_value(head, 0) == decryptor_address:
                print('Found the decryptor called: %x' % head)
                if print_insn_mnem(prev) == 'push' and print_insn_mnem(prev_2) == 'push':
                    func_hashes = get_operand_value(prev_2, 0)
                    import_table = get_operand_value(prev, 0)
                    api_hashes[import_table] = []
                    for i in range(0, 0xffff, 4):
                        api_hash = struct.unpack("<I", get_bytes(func_hashes + i, 4))[0]</pre>
                        if api_hash == 0xCCCCCCCC:
                            break
                        else:
                            api_hashes[import_table].append(api_hash ^ HARDCODED_XOR_KEY)
                else:
                    print('Non-standard arguments %x' % head)
    return api_hashes
def calculate_checksum(name, value):
    1.1.1
    Standard ror 0x0D
    1.1.1
    for symbol in name:
        value = ((value >> 0x0D) | (value << (0x20 - 0x0D))) & 0xFFFFFFF</pre>
        value += ord(symbol) & 0xFFFFFFF
    return value
def build_mappings(dll_filepath, dll_hashes):
    1.1.1
    This function calculates API checksums for the DLLs of interest
    1.1.1
    dll_name = os.path.basename(dll_filepath)
    dll_checksum = calculate_checksum(dll_name.lower() + '\x00', 0)
    result = {}
    if dll_checksum in dll_hashes:
        dll = pefile.PE(dll_filepath, fast_load=True)
        dll.parse_data_directories(directories=[pefile.DIRECTORY_ENTRY['IMAGE_DIRECTORY_ENTRY_EXPORT']])
        if hasattr(dll, 'DIRECTORY_ENTRY_EXPORT'):
           dll_name = dll_name.replace('.', '_')
```

```
result[dll_checksum] = {'dll_name': dll_name}
             export_directory = dll.DIRECTORY_ENTRY_EXPORT
             for symbol in export_directory.symbols:
                if symbol.name is not None:
                     api_name = symbol.name.decode('latin-1')
                     api_checksum = calculate_checksum(api_name + '\x00', dll_checksum)
                     result[api_checksum] = {'dll_name': dll_name, 'api_name': api_name}
    return result
def parse_dlls(path_to_dlls, dll_hashes):
    1.1.1
    This function goes through all the files in the specified path and calculates export hashes for DLLs matching by
name hashes
    1.1.1
    list_dlls = os.listdir(path_to_dlls)
    mappings = {}
    for dll_filename in list_dlls:
        full_path = os.path.join(path_to_dlls, dll_filename)
        mappings.update(build_mappings(full_path, dll_hashes))
    return mappings
def decrypt_all():
    1.1.1
    The function expects the cursor to be located at the bulk decryption function
    1.1.1
    start = get_screen_ea()
    api_hashes = extract_api_hashes(start)
    dll_hashes = []
    for _, hashes in api_hashes.items():
        dll_hashes.append(hashes[0])
    dll_mappings = parse_dlls(PATH_TO_DLLS, dll_hashes)
    for import_table, hashes in api_hashes.items():
        dll hash = hashes[0]
        api_hashes = hashes[1:]
        if dll_hash in dll_mappings:
            print('Found DLL hash %x = %s' % (dll_hash, dll_mappings[dll_hash]['dll_name']))
             for i, api_hash in enumerate(api_hashes):
                if api_hash in dll_mappings:
                     addr = import_table + (i+1)*4
                     print('Found API hash for %x = %s (%s)' % (addr, dll_mappings[api_hash]['api_name'],
dll_mappings[api_hash]['dll_name']))
                     set_name(addr, dll_mappings[api_hash]['api_name'])
                else:
                    print('API hash %x not found' % api_hash)
        else:
            print('DLL hash %x not found' % dll_hash)
ida_kernwin.add_hotkey("z", decrypt_all)
In addition, here is a script to automatically search for and decrypt most of the encrypted strings:
# Author: Alexey Kleymenov (a member of Nozomi Networks Labs)
import struct
import ida_kernwin
HARDCODED_XOR_KEY = 0x17019FF8
def is_utf16_heur(string):
    counter = 0
    for val in string:
        if val == 0:
            counter += 1
    if counter/float(len(string)) > 0.4:
        return True
    return False
def decrypt_string(start_addr):
    addr = start_addr
    result = b""
    for i in range(0xFFFF):
        instr = print_insn_mnem(addr)
        if instr != 'mov' or 'dword ptr' not in GetDisasm(addr):
            break
        value = get_operand_value(addr, 1)
        decoded_value = value ^ HARDCODED_XOR_KEY
        result += struct.pack("<I", decoded_value)</pre>
        addr = next_head(addr)
    result_orig = result
```

```
if is_utf16_heur(result):
        result = result.decode('utf-16le')
    else:
        result = result.decode('latin-1')
    if all(ord(c) < 128 for c in result):</pre>
        result = result.rstrip('\x00')
    else:
        result = 'hex: ' + result_orig.hex()
    print('%x - %s' % (start_addr, result))
    set_cmt(start_addr, result, 0)
def decrypt_string_manual():
    start_addr = get_screen_ea()
    decrypt_string(start_addr)
def search_for_encrypted_strings():
    for head in Heads():
        flags = GetFlags(head)
        if isCode(flags):
            if print_insn_mnem(head) == 'xor' and 'dword ptr' in GetDisasm(head) and get_operand_value(head, 1) ==
HARDCODED_XOR_KEY:
                next = next_head(head)
                if print_insn_mnem(next) == 'add' and get_operand_value(next, 1) == 4:
                    prev = prev head(head)
                    if 'mov
                                ecx' in GetDisasm(prev):
                        num = get_operand_value(prev, 1)
                        for i in range(num):
                            prev = prev_head(prev)
                        # print('Found the encryption string candidate: %x' % prev)
                        decrypt_string(prev)
ida_kernwin.add_hotkey(",", decrypt_string_manual)
search_for_encrypted_strings()
Related Content
```

RESEARCH REPORT

OT/IoT Security Report

What You Need to Know to Fight Ransomware and IoT Vulnerabilities

July 2021

RESEARCH REPORT

OT/IoT Security Report

What You Need to Know to Fight Ransomware and IoT Vulnerabilities July 2021

- Why ransomware is a formidable threat
- · Analysis of DarkSide, the malware that attacked Colonial Pipeline
- · Latest ICS and medical device vulnerability trends
- · Why P2P security camera architecture threatens confidentiality
- How security cameras are vulnerable
- · Ten measures to take immediately to defend your systems

Download

Related Links

- Blog: Colonial Pipeline Ransomware Attack: Revealing How DarkSide Works
- Blog: Responding to the Colonial Pipeline Breach and CISA Ransomware Alert
- Blog: OT and IoT Security: Adopt a Post-Breach Mindset Today
- Blog: Hard Lessons from the Oldsmar Water Facility Cyberattack Hack
- Executive Brief: The Cost of OT Cybersecurity Incidents and How to Reduce Risk
- Executive Brief: Business Leaders Need to Quickly Shift Focus to Industrial Cybersecurity

Nozomi Networks Labs

Nozomi Networks Labs is dedicated to reducing cyber risk for the world's industrial and critical infrastructure organizations. Through our cybersecurity research and collaboration with industry and institutions, we're helping defend the operational systems that support everyday life.