Analyzing The ForcedEntry Zero-Click iPhone Exploit
Used By Pegasus

@ trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.htmi

September 15, 2021

Exploits & Vulnerabilities

Citizen Lab has released a report on a new iPhone threat dubbed ForcedEntry. This zero-
click exploit seems to be able to circumvent Apple's BlastDoor security, and allow attackers
access to a device without user interaction.

By: Mickey Jin September 15, 2021 Read time: (words)

Citizen Lab has released a report detailing sophisticated iPhone exploits being used against
nine Bahraini activists. The activists were reportedly hacked with the NSO Group’s Pegasus
spyware using two zero-click iMessage exploits: Kismet, which was identified in 2020; and
ForcedEntry, a new vulnerability that was identified in 2021. Zero-click attacks are labeled
as sophisticated threats because unlike typical malware, they do not require user interaction
to infect a device. The latter zero-click spyware is particularly notable because it can bypass
security protections such as BlastDoor, which was designed by Apple to protect users
against zero-click intrusions such as these.

According to Citizen Lab’s report, Kismet was used from July to September 2020 and was
launched against devices running at least iOS 13.5.1 and 13.7. It was likely not effective
against the iOS 14 update in September. Then, in February 2021, the NSO Group started
deploying the zero-click exploit that managed to circumvent BlastDoor, which Citizen Lab
calls ForcedEntry. Amnesty Tech, a global collective of digital rights advocates and security
researchers, also observed zero-click iMessage exploit activity during this period and
referred to it as Megalodon.

Diving into ForcedEntry

According to the report from Citizen Lab, when the ForcedEntry exploit was launched against
the victim’s device, the device logs showed two types of crashes. The first crash apparently
happened when invoking ImagelO’s functionality for rendering Adobe Photoshop PSD data.

Our analysis focuses on the second crash, which is detailed in Figure 1. This crash
happened when invoking CoreGraphics’ functionality for decoding JBIG2-encoded data in a
PDF file. This analysis is solely based on samples from Citizen Lab; no new samples were

1/7

https://www.trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-forcedentry.html
https://citizenlab.ca/2021/08/bahrain-hacks-activists-with-nso-group-zero-click-iphone-exploits/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://citizenlab.ca/2021/08/bahrain-hacks-activists-with-nso-group-zero-click-iphone-exploits/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/

obtained.

onP13II0Dictiona

ForcedEntry on an iPhone 12 Pro Max running iOS 14.6. The red highlights from Trend Micro
Research.

From this crash log, we can deduce three interesting points: First, the zero-click attack is
dependent on iMessage attachment parsing. Next, the slide of dyld_shared_cache is 0,
which means all the system modules are loaded into a fixed address. Lastly, the crash point
0x181d6e228 is not the first place of vulnerability exploitation. We discuss the details of
these conclusions in the following sections.

Root cause of CVE-2021-30860

The vulnerability is inside the function JBIG2Stream::readTextRegionSeg of
CoreGraphics.framework The crash point 0x181d6e228 (as seen in box 3 in the preceding
figure) is at line 161 of the function JBIG2Stream::readTextRegionSeg of the following
screenshot:

2/7

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

[X N N

[N

N N NN

N

-] -] -]

e e

146
147
148
149
150
151
152
153
154
155
e 156
157
158
159
160
161
162
163
164
165
166
167
168
@ 169

170
@ 171
e 172

173
e 174

NN N NN NN

N

N N NN

o

145 |

numSyms = D2
nRefSegs 1 = nRefSegs;
refSegs_1 = (int *)refSegs;
v28 = nRefSags:
do
{
Segment = (JBIGZSymbolDict *)JBIG2Stream::findSegment(this, *refSegs 1)}
if (!Segment)
{
v47] = (*({ intéd (_ fastcall **)(JBIGZ5tream *))(*(_QWORD *)this + 40LL))(this);
error(v47, "Invalid segment reference in JRIGZ text region”);
j__fres(*(void **)v106)};
operator delete(v106);
return;

v3i0 = Segment;
if { Segment->viptr->getType(Scgment) == jbig2SegSymbolDict)
{

numSyms += yil->gize;

1
else if { vil->viptr->getType(vil) == jbig2SegCodeTable)

GLigt::append(v106, v30);
1
++trefSegs 1:
-t 283

}
while { vZ8):
vBy = yl2:
vil = yld;:
vil = Q;
| R
BymE = (QWORD *)gmallocn(numSyms, Bu)}
i 1 = OLL;
k = QOLL:
do
{
ieg = (JEIGZSymbolDict *)JBIGZStream::findSegment(this, refSegs[i 1]):
£f [seg
&& (symbolDict = seg, seg->viptr->getType(scg) == jbig2SegSymbolDict)
L& (size = symbolDict->size, (_DWORD)size))
{
bitmaps = symbolDict->bitmaps;
do
{
v40) = { intéd)*bitmaps++;
kk = (unsigned int){k + 1}
[BymE[(unsigned int)k] = w4
LODWORD(k) = k + 1:
==zizeg

6; // crash here !1!

} i
while { size); L3

}

else

kk = k;
}
+i 1;
k = kk;

}
while (i 1 != nRefSegs_1 };

00085228 __ZN11JBIG2Streaml7readTextRegionSegEjiijPjj:161 (181D6E228)

Figure 2. Screenshot of the function JBIG2Stream::readTextRegionSeg showing the crash

point

First, it calculates the numSyms according to the JBIG2SymbolDict segment:

3/7

numSyms = @;
for (1 = @; 1 < nRefSegs; ++i) {
if ((seg = findSegment(refSegs[i]))) {
if (seg->getType() == jbig2SegSymbolDict) {
numSyms += ((JBIG2SymbolDict *)seg)->getSize();
} else if (seg->getType() == jbig2SegCodeTable) {
codeTables->append(seg);

}
} else {

error(getPos(), "Invalid segment reference in JBIG2 text region")

delete codeTables;
return;

}
}

The type of numSyms is unsigned int, and the return type of function seg->getSize() is also
unsigned int. Therefore, numSyms could be smaller than the size of one JBIG2Segment due
to integer overflow. One example is numSyms=1=(0x80000000+0x80000001) <
0x80000000.

Then, it allocates the heap buffer syms, with the size numSyms * 8 :

syms = (JBIG2Bitmap **)gmallocn(numSyms, sizeof(JBIG2Bitmap *)):

Finally, it fills the syms with the value from bitmap:

kk:@;
for (i = ©; i < nRefSegs; ++i) {
if ((seg = findSegment(refSegs[i]))) {
if (seg->getType() == jbig2SegSymbolDict) { //seqg->qgetType() 1i
s a virtual function
symbolDict = (JBIG2SymbolDict *)seg;
for (k = @; k < symbolDict->getSize(); ++k) {
syms[kk++] = symbolDict->getBitmap(k); // crashed h

ere

}
}
}

The loop times are dependent on the JBIG2Segment size, which could be larger than the
buffer syms size. This leads to the out-of-bounds write access for the heap buffer syms.

Looking at Apple’s fix

Apple patched the function in iOS 14.8:

47

149 syms = (_QWORD *)gmalloenCnumSyms, 8);

156 1.1 = @LL;

151 kk = 0;

152 do

153 {

154 seg = (JBIG2SymbolDict *)JBIG2Stream::findSegment(this, refSegs[i_1]);
155 if (seg)

156 {

157 symbolDict = segq;

158 vi7 = seg-»vfptr—>getType(seg) ¥ jbig2SegSymbolDict J|| 4« = numSyms;
159 if (37)

160 {

161 k= 8LL;

162 size = symbolDict-—»size;

163 do

164 {

165 if (size = k)

166 break;

167 syms[kk + k] = symbolDict-»bitmaps[k];

168 i

169 }

170 whi‘l.el£ numSyms — (unsigned __int6u)kk = k);
171 kk +=K;

172 }

173 }

174 i 1;

175 }

176 while (i_1 % nRefSegs);

177 vie = syms;

178 vli2 = vB6;

Figure 3. Screenshot of the same function JBIG2Stream::readTextRegionSeg with fixes in
place

We can see that Apple adds two new boundary checks (the red box in Figure 3), to avoid
overflowing the syms buffer.

On the Pegasus spyware exploitation
Disabling ASLR

The dyld_shared_cache of version iOS 14.6 (18F72) was loaded into IDA Pro for static
analysis, after which a surprising result emerged. We were able to go to the addresses on
the call stack directly without rebasing the segment.

As deduced from the screenshot in Figure 1 (see box 2), the slide of dyld_shared_cache is
0. However, in common crash scenarios, these addresses should be in slide.

If the screenshot of the original crash log has not been modified, then the conclusion is
worrying. It should be noted that Pegasus already disabled Address Space Layout
Randomization (ASLR) before its exploitation.

5/7

Bypassing PAC

By inspecting the address 0x181d6e20c from Frame 1 of the call stack trace, we can see
that register x0, the return value of function JBIG2Stream::findSegment, is a subclass of
JBIG2Segment:

CoreGraphics:_ text:0000000181D6ELES LDR Wl, [X26,X22,LSL#2) ; unsigned int
CoreGraphics: _text:0000000181D6ELEC MoV X0, X19 ; this

CoreGraphics: text:0000000181D6GE1F0 BL __EN11JBIG2StreamllfindSegmentEj ; JBIG2St
CoreGraphics:__ text:0000000181D6ELF4 CBZ X0, loc_l81D6E23C

CoreGraphics: text:0000000181D6ELFS8 MOV X23, X0
Cnrosruhics:_toxhBuooooulslnﬁnlm LDR X8, [X0]

CoreGraphics: text:0000000181D6E200 LDRAA X9, [X8,#0x1l0])!

CoreGraphics: text:0000000181D6E204 MOVE X8, #0xFAdA,LSLF48

CoreGraphics: text:0000000181D6E208 BLRAR X9, XB ; call virtual function getType()
CoreGraphics:_ text:0000000181D6E20C CHMP wWo, #1

CoreGraphics: _text:0000000181D6E210 B.NE loc_lB1DEE23C

CoreGraphics: text:0000000181D6E214 LDR W8, [X23,#0xC)

00085208 0000000181DEE208: JBIG2Stream::readTextRegionSeg(uint,int,int,uint,uint *,uint)+364 (Synchron

class JBIG2Segment {

public:

virtual JBIG2SegmentType getType() = @;
private:

Guint segNum;
¥

There are four kinds of subclasses that override the getType() virtual function, but the
following code shows that they just return one of the enumerate values:

enum JBIG2SegmentType {
jbig2SegBitmap,
jbig2SegSymbolDict,
jbig2SegPatternDict,
jbig2SegCodeTable

¥
For example, JBIG2SymbolDict::getType just returns jbig2SegSymbolDict=1:

0181D6BY98B4 ; int64d fastecall JBIGZSymbolDict::getType(JBIG25ymbolDict *_

0181D6B984 _ EN15JBIGZSymbolDictTgetTypeEv ; DATA XREF: CoreGraphics
0181D6EB9R4 MOV wWo, #jhig2ﬂeﬂmﬂ:ﬂlﬂiut
0181D6B98E RET

'?!@}Dﬁﬂ?ﬁﬁ : End of funetion JBIG2SymbolDict::getType(void)
Therefore, the frame 1 should have called the virtual function seg->getType(). But in
actuality, it was already subverted to the current function itself (frame 0).

This shows that the virtual functions table of the object JBIG2Segment had already been
replaced, and the pointer authentication code (PAC) security feature was bypassed. This is
significant because the PAC security mechanism was developed to help prevent zero-click

6/7

https://www.vice.com/amp/en/article/pkd4kg/apple-is-going-to-make-it-harder-to-hack-iphones-with-zero-click-attacks?__twitter_impression=true

hacking. This also shows that the crash point is not the first place of the vulnerability
exploitation.

Conclusion and recommendations

From the view of attack technologies used, we can see that Pegasus is quite an advanced
threat for iOS users. However, it seems that these attacks are being launched on very
specific targets, rather than common users.

The information from the recent Pegasus attack is from the forensic analysis of Citizen Lab
and Amnesty Tech, and we have not found Pegasus attack samples that are at large yet. We
are actively searching and monitoring for these threats and will continue to share more
details as our investigation continues.

Essentially, this attack is a very common file format parsing vulnerability. We previously
discovered CVE-2020-9883, a vulnerability similar to ForcedEntry, which could be exploited
to do the same as what Pegasus has done here. ForcedEntry’s key point is the exploit
technology as it is still unknown how it is able to bypass the PAC and disable ASLR.

In the meantime, we strongly recommendupdating_your device to iOS 14.8. As stated
previously, common iOS users are not the target for attacks using this spyware. However,
there are simple security steps that users can take. For example, concerned users can block
iMessages from unknown senders, while a more drastic step would be to disable the
iMessage function completely in the device’s Preferences.

7/7

https://www.vice.com/amp/en/article/pkd4kg/apple-is-going-to-make-it-harder-to-hack-iphones-with-zero-click-attacks?__twitter_impression=true
https://www.zerodayinitiative.com/advisories/ZDI-20-1238/
https://support.apple.com/en-us/HT212807

