The Recent iOS 0-Click, CVE-2021-30860, Sounds
Familiar. An Unreleased Write-up: One Year Later

C:D blog.zecops.com/research/the-recent-ios-0-click-cve-2021-30860-sounds-familiar-an-unreleased-write-up-one-year-
later/

By ZecOps Research Team September 14, 2021

D

TLDR;

ZecOps identified and reproduced an Out-Of-Bounds Write vulnerability that can be triggered
by opening a malformed PDF. This vulnerability reminded us of the FORCEDENTRY
vulnerability exploited by NSO/Pegasus according to the CitizenLabs blog.

As a brief background: ZecOps have analyzed several devices of Al-Jazeera journalists in
the summer 2020 and automatically and successfully found compromised devices without
relying on any |IOC. These attacks were later attributed to NSO / Pegasus.

ZecOps Mobile EDR and Mobile XDR are available here.

Noteworthy, although these two vulnerabilities are different — they are close enough and
worth a deeper read.

Timeline:

1/11

https://blog.zecops.com/research/the-recent-ios-0-click-cve-2021-30860-sounds-familiar-an-unreleased-write-up-one-year-later/
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/
https://www.zecops.com/our-solution

o We reported this vulnerability on September 1st, 2020 — iOS 14 beta was vulnerable
at the time.

o The vulnerability was patched on September 14th, 2020 — iOS 14 beta release.

e Apple contacted us on October 20, 2020 — claiming that the bug was already fixed —
(“We were unable to reproduce this issue using any current version of iOS 14. Are you
able to reproduce this issue using any version of iOS 147 If so, we would appreciate
any additional information you can provide us, such as an updated proof-of-concept.”).
No CVE was assigned.

It is possible that NSO noticed this incremental bug fix, and dived deeper into CoreGraphics.

The Background

Earlier last year, we obtained a PDF file that cannot be previewed on iOS. The PDF sample
crashes previewUI with segmentation fault, meaning that a memory corruption was triggered
by the PDF.

Open the PDF previewUl flashes and shows nothing:

2/11

Carrier = 2:00 PM [

Done 6 of 7 @

) =

The important question is: how do we find out the source of the memory corruption?

The MacOS preview works fine, no crash. Meaning that it'’s the iOS library that might have an
issue. We confirmed the assumption with the iPhone Simulator, since the crash happened on
the iPhone Simulator.

3/11

Process: com.apple.quicklook.extension.previewlI [31594]
Path: fLibrary/Developer/CoreSimulater/Profiles/Runtimes/
i05 13.8.simruntime/Contents/Resources/RuntimeRoot/System/Library/
Frameworks/QuicklLook. framework/PlugIns/
com.apple.quicklook.extension.previewll.appex/
com.apple.quicklook.extenslion. previewlI

Identifier: com.apple.quicklook. extension. previewlI
Version: 1.8 (1)

Code Type: XB6—64 (Native)

Parent Process: launchd_sim [31384]

Responsible: SimulatorTrampoline [31272]

User ID: 581

Date/Time: 2020-12-83 13:57:24.425 +0888

05 Version: Mac 05 X 18.15.7 (19H15)

Report Version: 12

Anonymous UUID: DFFAGRBB-5564—-CEEF-C2AF—@TFEOD2DEG2ZD
Time Awake S5ince Boot: 44888 seconds

System Integrity Protection: disabled

Crashed Thread: @ Dispatch queue: com.apple.main—-thread

Exception Type: EXC_BAD_INSTRUCTION (SIGILL)
Exception Codes: gxgoepagoeRapRRRR]l, OxBRooleBRORRBRBRR
Exception Mote: EXC_CORPSE_MNOTIFY

Termimation Signal: Illegal instruction: 4
Termination Reason: Mamespace SIGNAL, Code @x4
Terminating Process: exc handler [31594]

Application Specific Information:
CoreSimulator 732.18.8.2 - Device: iPhone8_13.8 (FGEEARE3-FBBE-4327-
A3RB—BFD1F63C2C16) - Rumtime: i05 13.@8 (17A577) - DeviceType: iPhone B

I's great news since Simulator on MacOS provides better debug tools than iOS. However,
having debug capability is not enough since the process crashes only when the corrupted
memory is being used, which is AFTER the actual memory corruption.

We need to find a way to trigger the crash right at the point the memory corruption happens.

The idea is to leverage Guard Malloc or Valgrind, making the process crash right at the
memory corruption occurs.

“‘Guard Malloc is a special version of the malloc library that replaces the standard
library during debugging. Guard Malloc uses several techniques to try and crash your
application at the specific point where a memory error occurs. For example, it places
separate memory allocations on different virtual memory pages and then deletes the
entire page when the memory is freed. Subsequent attempts to access the deallocated
memory cause an immediate memory exception rather than a blind access into
memory that might now hold other data.”

Environment Variables Injection

In this case we cannot simply add an environment variable with the command line since the
previewUl launches on clicking the PDF which does not launch from the terminal, we need to
inject libgmalloc before the launch.

4/11

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MallocDebug.html
https://valgrind.org/

The process “launchd_sim” launches Simulator XPC services with a trampoline process
called “xpcproxy_sim”. The “xpcproxy_sim” launches target processes with a posix_spawn
system call, which gives us an opportunity to inject environment variables into the target
process, in this case “com.apple.quicklook.extension.previewUI”.

The following lldb command “process attach —name xpcproxy_sim —waitfor” allows us to
attach xpcproxy_sim then set a breakpoint on posix_spawn once it’s launched.

jae
moveg &r
Jmip @x117 a8 ; cerror_nocancel
retq
Target @: (xpcproxy_sim) stopped.

Executable module set to "/Library/Developer/CoreSimulator/Profiles/Runtimes/105 13.8.s1
Contents/Resources/RuntimeRoot/usr/libexec/ proxy_sim".
Architecture t to: xB6_bd-apple-ios-simulator.

b posix_spawn
Breakpoint 1: no locations (pending).
WARNING: Unable to resolve breakpoint to any actual locations.

44868 resuming
odded to breakpoint 1
44868 5tupped
CO stop reason =
rame #@: nel.dylih'puﬁix_ﬁpuwn
libsystem_kernel.dylib posi
el3l <+d=: pushg
32 =+1=: mowvg
=: pushg
=1 pushg
B: (xpcproxy_sim) stopped.
Once the posix_spawn breakpoint is hit, we are able to read the original environment

variables by reading the address stored in the $r9 register.

By a few simple lldb expressions, we are able to overwrite one of the environment variables
into “DYLD_INSERT _LIBRARIES=/usr/lib/libgmalloc.dylib”, injection complete.

5/11

expression

(char *) $1 = OxQBOa7E POBRE <no value availables
expression (vo ‘_vaSI "DYLD_INS ERT LIERARIE ‘usr/lib/l1bgmal loc.dylib"”)
memory wri 0

Continuing execution, the process crashed almost right away.

6/11

1 resuming
n added to
stopped
gueue = "PDFKit.

: xPO0a7 51417867 1ib em_platform.dylib’ at form_memmove3VARIANT $MNehalem + 71
em_platform. dy $VARIANT $Nehalem:
FFff51417867 7 movg rdi
addqg
subqg
jae
cklook . extens

571b@fc

71b1

Analyzing the Crash

Finally we got the Malloc Guard working as expected, the previewUI crashes right at the
memmove function that triggers the memory corruption.

After libgmalloc injection we have the following backtrace that shows an Out-Of-Bounds
write occurs in “CGDataProviderDirectGetBytesAtPositioninternal”.

7/11

Thread 3 Crashed:: Dispatch queue: PDFKit.PDFTilePool.workQueue

0 libsystem_platform.dylib 0Xx0000000106afc867
_platform_memmove$VARIANT$Nehalem + 71

1 com.apple.CoreGraphics 0x0000000101b44a98
CGDataProviderDirectGetBytesAtPositionInternal + 179

2 com.apple.CoreGraphics 0x0000000101d125ab
provider_for_destination_get_bytes_at_position_inner + 562
3 com.apple.CoreGraphics 0Xx0000000101b44b0O9
CGDataProviderDirectGetBytesAtPositionInternal + 292

4 com.apple.CoreGraphics 0Xx0000000101c6c60C
provider_with_softmask_get_bytes_at_position_inner + 611

5 com.apple.CoreGraphics 0Xx0000000101b44b09
CGDataProviderDirectGetBytesAtPositionInternal + 292

6 com.apple.CoreGraphics Ox0000000101dad19a
7 com.apple.CoreGraphics 0x0000000101c58875
8 com.apple.CoreGraphics 0Xx0000000101c65611
9 com.apple.CoreGraphics 0Xx0000000101c6102f
10 com.apple.CoreGraphics 0Xx0000000101a2479e
875

11 com.apple.CoreGraphics 0x0000000101c8399d
12 com.apple.CoreGraphics 0x0000000101c68d6f
CGContextDrawImagewWithOptions + 1112

13 com.apple.CoreGraphics 0x0000000101ab7c94

CGPDFDrawingContextDrawImage + 752

get_chunks_direct + 242
img_raw_read + 1470
img_data_lock + 10985
CGSImageDatalLock + 1674
ripc_AcquireRIPImageData +

ripc_DrawImage + 2237

With the same method, we can take one step further, with the MallocStackLogging flag
libgmalloc provides, we can track the function call stack at the time of each allocation.

After setting the “MallocStackLoggingNoCompact=1”, we got the following backtrace
showing that the allocation was inside CGDataProviderCreateWithSoftMaskAndMatte.

8/11

ALLOC 0Ox6000ec9f9off0-0x6000ecofofff [size=16]:
(libsystem_pthread.dylib) start_wqgthread |
(libsystem_pthread.dylib) _pthread_wqthread |
(libdispatch.dylib) _dispatch_workloop_worker_thread |
(libdispatch.dylib) _dispatch_lane_invoke |
(libdispatch.dylib) _dispatch_lane_serial_drain |
(libdispatch.dylib) _dispatch_client_callout |
(libdispatch.dylib) _dispatch_call_block_and_release |
(com.apple.PDFKit) __ 71-[PDFPageBackgroundManager
forceUpdateActivePageIndex:withMaxDuration:]_block_invoke |
Ox7fff2a9dfe76 (com.apple.PDFKit) -[PDFPageBackgroundManager
_drawPageImage:forQuality:] |
Ox7fff2aa23b85 (com.apple.PDFKit) -[PDFPage imageOfSize:forBox:withOptions:] |
Ox7fff2aa23ele (com.apple.PDFKit) -[PDFPage

OX7fff51c07b77
Ox7fff51c08a3d
Ox7fff519f40c4
Ox7fff519eab44
Ox7fff519e9753
Ox7fff519e38ch
Ox7fff519e2951
Ox7fff2a9dfo4d

_newCGImageWithBox:bitmapSize:scale:offset:backgroundColor:withRotation:withAntialiasi

Ox7fff2aa22a40 (com.apple.PDFKit) -[PDFPage

_drawwWithBox:inContext:withRotation:isThumbnail:withAnnotations:withBookmark:withDeleg

Ox7fff240bdfe®@ (com.apple.CoreGraphics) CGContextDrawPDFPage |
0x7fff240bdac4 (com.apple.CoreGraphics) CGContextDrawPDFPageWithDrawingCallbacks |

0x7fff244bboObl (com.apple.CoreGraphics) CGPDFScannerScan

| ox7fff244babo2

(com.apple.CoreGraphics) pdf_scanner_handle_xname |

Ox7fff2421e73c
Ox7fff2414dc94
Ox7fff242fed6f
Ox7fff2431999d
Ox7fff240ba79e
Ox7fff242f6fe8
Ox7fff242f758b
Ox7fff24301fe2
Ox7fff51bddad8
Ox7fff51bdd426

(com.apple.
(com.apple.
(com.apple.
(com.apple.
(com.apple.
(com.apple.
(com.apple.
(com.apple.
(libsystem_|
(libsystem_|

The Vulnerability

CoreGraphics)
CoreGraphics)
CoreGraphics)
CoreGraphics)
CoreGraphics)
CoreGraphics)
CoreGraphics)
CoreGraphics)
malloc.dylib)
malloc.dylib)

op_Do |

CGPDFDrawingContextDrawImage |
CGContextDrawImageWithOptions |
ripc_DrawImage |

ripc_AcquireRIPImageData |
CGSImageDatalLock |

img_image |
CGDataProviderCreatewWithSoftMaskAndMatte |
calloc |

malloc_zone_calloc

The OOB-Write vulnerability happens in the function
“CGDataProviderDirectGetBytesAtPositionInternal’ of CoreGraphics library, the
allocation of the target memory was inside the function
“CGDataProviderCreateWithSoftMaskAndMatte“.

9/11

size_t _ usercall CGDataProviderDirectGetBytesAtPositionInternal@<rax>(_QWORD *al@<rdi>, char *dst@<rsi>, signed __int64 a3@<rdx>, size_t a
{
size_t len; // rl3
size_t size; // rbx
signed _ int64 pos; // ri2
__int64 v1d; // rax
_1nt64 (__fastecall *v15)(_QWORD, char *, size_t, __int64); // r8
signed _ int64 v16; // rax

D~ NN N

__int64 v17; // rbx

10 unsigned _ int64 w1B; // rcx
11 unsigned __int64 w19; // rax
12| __int64 v20; // r8

13| —_int64 v21; // r9

18] “m128 v22; // xomd

15| “ml28 v23; // xmoms

16| char v25; // [rsp-Bh] [rbp-30h]

18| w25 = a5}
19/ if (a3 <0)
20 lnsu‘t _rtn(

21 roviderDi. t itionInternal”,

22 "J’Bulldlootfl.l.hrnr]’fﬁmhns!con apple.xbs/Sources/C ies_sim/cC ics-1265.9/ ics/Dat / rovider.c",
23 W].

24 "pos >= 0");

25| len = a4}
26| Af (ad)

27

28 if (lal || (size = al[4], size == -1LL))

29 I-lm _rtn(

30 taProviderDi t ositionInt 1",

31 "f!uildmtfﬂhrary!tacho!fcon apple.xbs/s fc ies_Sim/Cor ics-1265.9/cC ics/Dat s/CGDataProvider.c”,
3z 605,

33 sl.lo I= (=1)");

34 pos = a3j

35 vl4 = CGDataProviderRetainBytePtr((__int6d4)al);

36 Aif (vid)

37

3s if (len + pos <= size || (len = size - pos, (signed __int64)size > pos))// size is bigger than actual allocated memory
19 {

40 jmemcpy(dst, (const void *)(pos + v14), len);// OOB here

41 LABEL__ 2!1

a2 derRel tePtr((_ int64)al);

43 :.turn len;

a4 }

45 }

It allocates 16 bytes of memory if the “bits_per_pixel” equals or less than 1 byte, which is
less than copy length.

1032 bits_per_pixel = (unsigned __ int64)(v186

1033 * (GBitmapPixelInfoGetBitsPerPixel(
1034 (unsigned _ int64)8&v192,

1035 (signed int)v228 + 304,

1836 v181,

1037 0,

1838 v182,

1839 v183,

1848 v189,

1041 v19@,

1042 v191)

1043 +7) > 3;

1044 1}

1045| if (v184 > bits_per_pixel)

1046 bits_per_pixel = v184;

1847 alloc size = (bits per pixel + 15) & OxFFFFFFFFFFFFFFFOLL;// alloc_size is 16 if (bits_per pixel <= 1)
1048| *((_QWORD *)vie6 + 153) = alloc_size;

1049| v188 = calloc(lullL, alloc size);

1050| *((_QWORD *)v166 + 152) = v188;

We came out with a minimum PoC and reported to Apple on September 1st 2020, the issue
was fixed on the iOS 14 release. We will release this POC soon.

10/11

1018| if (!bits_per pixel)

1011 {

1012 vi78 = v171[8];

1013 gmemcpy (&retaddr, v204, @x130ull);

1014 bits per pixel = (unsigned inted)(v178 * CGBitmapPixelInfoGetBitsPerPixel(&

1015 }

1016| if (vl76 » bits _per pixel)

1017 bits per pixel = v176;

1018 alloc size = (delta + bits per pixel + 15) & OxFFFFFFFFFFFFFFFOLL;// the patch
1019 v171[153] = alloc_size;

1028| v188 = callec{lullL, alloc size);

1021| v171[152] = v18e;

1022 if (!visae || vi7i[15@])

ZecOps Mobile EDR & Mobile XDR customers are protected against NSO and are well
equipped to discover other sophisticated attacks including 0O-days attacks.

11/11

https://www.zecops.com/contact/free-trial

