
1/11

By ZecOps Research Team September 14, 2021

The Recent iOS 0-Click, CVE-2021-30860, Sounds
Familiar. An Unreleased Write-up: One Year Later

blog.zecops.com/research/the-recent-ios-0-click-cve-2021-30860-sounds-familiar-an-unreleased-write-up-one-year-
later/

TLDR;

ZecOps identified and reproduced an Out-Of-Bounds Write vulnerability that can be triggered
by opening a malformed PDF. This vulnerability reminded us of the FORCEDENTRY
vulnerability exploited by NSO/Pegasus according to the CitizenLabs blog.

As a brief background: ZecOps have analyzed several devices of Al-Jazeera journalists in
the summer 2020 and automatically and successfully found compromised devices without
relying on any IOC. These attacks were later attributed to NSO / Pegasus.

 ZecOps Mobile EDR and Mobile XDR are available here.

Noteworthy, although these two vulnerabilities are different – they are close enough and
worth a deeper read.

Timeline:

https://blog.zecops.com/research/the-recent-ios-0-click-cve-2021-30860-sounds-familiar-an-unreleased-write-up-one-year-later/
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/
https://www.zecops.com/our-solution

2/11

We reported this vulnerability on September 1st, 2020 – iOS 14 beta was vulnerable
at the time.
The vulnerability was patched on September 14th, 2020 – iOS 14 beta release.
Apple contacted us on October 20, 2020 – claiming that the bug was already fixed –
(“We were unable to reproduce this issue using any current version of iOS 14. Are you
able to reproduce this issue using any version of iOS 14? If so, we would appreciate
any additional information you can provide us, such as an updated proof-of-concept.”).
No CVE was assigned.

It is possible that NSO noticed this incremental bug fix, and dived deeper into CoreGraphics.

The Background

Earlier last year, we obtained a PDF file that cannot be previewed on iOS. The PDF sample
crashes previewUI with segmentation fault, meaning that a memory corruption was triggered
by the PDF.

Open the PDF previewUI flashes and shows nothing:

3/11

The important question is: how do we find out the source of the memory corruption?

The MacOS preview works fine, no crash. Meaning that it’s the iOS library that might have an
issue. We confirmed the assumption with the iPhone Simulator, since the crash happened on
the iPhone Simulator.

4/11

It’s great news since Simulator on MacOS provides better debug tools than iOS. However,
having debug capability is not enough since the process crashes only when the corrupted
memory is being used, which is AFTER the actual memory corruption.

We need to find a way to trigger the crash right at the point the memory corruption happens.

The idea is to leverage Guard Malloc or Valgrind, making the process crash right at the
memory corruption occurs.

“Guard Malloc is a special version of the malloc library that replaces the standard
library during debugging. Guard Malloc uses several techniques to try and crash your
application at the specific point where a memory error occurs. For example, it places
separate memory allocations on different virtual memory pages and then deletes the
entire page when the memory is freed. Subsequent attempts to access the deallocated
memory cause an immediate memory exception rather than a blind access into
memory that might now hold other data.”

Environment Variables Injection

In this case we cannot simply add an environment variable with the command line since the
previewUI launches on clicking the PDF which does not launch from the terminal, we need to
inject libgmalloc before the launch.

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MallocDebug.html
https://valgrind.org/

5/11

The process “launchd_sim” launches Simulator XPC services with a trampoline process
called “xpcproxy_sim”. The “xpcproxy_sim” launches target processes with a posix_spawn
system call, which gives us an opportunity to inject environment variables into the target
process, in this case “com.apple.quicklook.extension.previewUI”.

The following lldb command “process attach –name xpcproxy_sim –waitfor” allows us to
attach xpcproxy_sim then set a breakpoint on posix_spawn once it’s launched.

Once the posix_spawn breakpoint is hit, we are able to read the original environment
variables by reading the address stored in the $r9 register.

By a few simple lldb expressions, we are able to overwrite one of the environment variables
into “DYLD_INSERT_LIBRARIES=/usr/lib/libgmalloc.dylib”, injection complete.

6/11

Continuing execution, the process crashed almost right away.

7/11

Analyzing the Crash

Finally we got the Malloc Guard working as expected, the previewUI crashes right at the
memmove function that triggers the memory corruption.

After libgmalloc injection we have the following backtrace that shows an Out-Of-Bounds
write occurs in “CGDataProviderDirectGetBytesAtPositionInternal”.

8/11

Thread 3 Crashed:: Dispatch queue: PDFKit.PDFTilePool.workQueue
0 libsystem_platform.dylib 0x0000000106afc867
_platform_memmove$VARIANT$Nehalem + 71
1 com.apple.CoreGraphics 0x0000000101b44a98
CGDataProviderDirectGetBytesAtPositionInternal + 179
2 com.apple.CoreGraphics 0x0000000101d125ab
provider_for_destination_get_bytes_at_position_inner + 562
3 com.apple.CoreGraphics 0x0000000101b44b09
CGDataProviderDirectGetBytesAtPositionInternal + 292
4 com.apple.CoreGraphics 0x0000000101c6c60c
provider_with_softmask_get_bytes_at_position_inner + 611
5 com.apple.CoreGraphics 0x0000000101b44b09
CGDataProviderDirectGetBytesAtPositionInternal + 292
6 com.apple.CoreGraphics 0x0000000101dad19a get_chunks_direct + 242
7 com.apple.CoreGraphics 0x0000000101c58875 img_raw_read + 1470
8 com.apple.CoreGraphics 0x0000000101c65611 img_data_lock + 10985
9 com.apple.CoreGraphics 0x0000000101c6102f CGSImageDataLock + 1674
10 com.apple.CoreGraphics 0x0000000101a2479e ripc_AcquireRIPImageData +
875
11 com.apple.CoreGraphics 0x0000000101c8399d ripc_DrawImage + 2237
12 com.apple.CoreGraphics 0x0000000101c68d6f
CGContextDrawImageWithOptions + 1112
13 com.apple.CoreGraphics 0x0000000101ab7c94
CGPDFDrawingContextDrawImage + 752

With the same method, we can take one step further, with the MallocStackLogging flag
libgmalloc provides, we can track the function call stack at the time of each allocation.

After setting the “MallocStackLoggingNoCompact=1”, we got the following backtrace
showing that the allocation was inside CGDataProviderCreateWithSoftMaskAndMatte.

9/11

ALLOC 0x6000ec9f9ff0-0x6000ec9f9fff [size=16]:
0x7fff51c07b77 (libsystem_pthread.dylib) start_wqthread |
0x7fff51c08a3d (libsystem_pthread.dylib) _pthread_wqthread |
0x7fff519f40c4 (libdispatch.dylib) _dispatch_workloop_worker_thread |
0x7fff519ea044 (libdispatch.dylib) _dispatch_lane_invoke |
0x7fff519e9753 (libdispatch.dylib) _dispatch_lane_serial_drain |
0x7fff519e38cb (libdispatch.dylib) _dispatch_client_callout |
0x7fff519e2951 (libdispatch.dylib) _dispatch_call_block_and_release |
0x7fff2a9df04d (com.apple.PDFKit) __71-[PDFPageBackgroundManager
forceUpdateActivePageIndex:withMaxDuration:]_block_invoke |
0x7fff2a9dfe76 (com.apple.PDFKit) -[PDFPageBackgroundManager
_drawPageImage:forQuality:] |
0x7fff2aa23b85 (com.apple.PDFKit) -[PDFPage imageOfSize:forBox:withOptions:] |
0x7fff2aa23e1e (com.apple.PDFKit) -[PDFPage
_newCGImageWithBox:bitmapSize:scale:offset:backgroundColor:withRotation:withAntialiasi
|
0x7fff2aa22a40 (com.apple.PDFKit) -[PDFPage
_drawWithBox:inContext:withRotation:isThumbnail:withAnnotations:withBookmark:withDeleg
|
0x7fff240bdfe0 (com.apple.CoreGraphics) CGContextDrawPDFPage |
0x7fff240bdac4 (com.apple.CoreGraphics) CGContextDrawPDFPageWithDrawingCallbacks |
0x7fff244bb0b1 (com.apple.CoreGraphics) CGPDFScannerScan | 0x7fff244bab02
(com.apple.CoreGraphics) pdf_scanner_handle_xname |
0x7fff2421e73c (com.apple.CoreGraphics) op_Do |
0x7fff2414dc94 (com.apple.CoreGraphics) CGPDFDrawingContextDrawImage |
0x7fff242fed6f (com.apple.CoreGraphics) CGContextDrawImageWithOptions |
0x7fff2431999d (com.apple.CoreGraphics) ripc_DrawImage |
0x7fff240ba79e (com.apple.CoreGraphics) ripc_AcquireRIPImageData |
0x7fff242f6fe8 (com.apple.CoreGraphics) CGSImageDataLock |
0x7fff242f758b (com.apple.CoreGraphics) img_image |
0x7fff24301fe2 (com.apple.CoreGraphics) CGDataProviderCreateWithSoftMaskAndMatte |
0x7fff51bddad8 (libsystem_malloc.dylib) calloc |
0x7fff51bdd426 (libsystem_malloc.dylib) malloc_zone_calloc

The Vulnerability

The OOB-Write vulnerability happens in the function
“CGDataProviderDirectGetBytesAtPositionInternal” of CoreGraphics library, the
allocation of the target memory was inside the function
“CGDataProviderCreateWithSoftMaskAndMatte“.

10/11

It allocates 16 bytes of memory if the “bits_per_pixel” equals or less than 1 byte, which is
less than copy length.

We came out with a minimum PoC and reported to Apple on September 1st 2020, the issue
was fixed on the iOS 14 release. We will release this POC soon.

11/11

ZecOps Mobile EDR & Mobile XDR customers are protected against NSO and are well
equipped to discover other sophisticated attacks including 0-days attacks.

https://www.zecops.com/contact/free-trial

