
1/20

Cybercrime Group FIN7 Using Windows 11 Alpha-
Themed Docs to Drop Javascript Backdoor

anomali.com/blog/cybercrime-group-fin7-using-windows-11-alpha-themed-docs-to-drop-javascript-backdoor

Research | September 2, 2021

 by Anomali Threat Research

https://www.anomali.com/blog/cybercrime-group-fin7-using-windows-11-alpha-themed-docs-to-drop-javascript-backdoor

2/20

Authored by: Gage Mele, Tara Gould, Rory Gould, and Sean Townsend

Key Findings

Anomali Threat Research discovered six malicious Windows 11 Alpha-themed Word
documents with Visual Basic macros being used to drop JavaScript payloads,
including a Javascript backdoor.
While we cannot conclusively identify the attack vector for this activity, our analysis.
strongly suggests the attack vector was an email phishing or spearphishing campaign.
We assess with moderate confidence that the financially motivated threat group FIN7
is responsible for this campaign.
Based on the file names observed in this campaign, the activity likely took place
around late-June to late-July 2021.

Overview

Anomali Threat Research conducted analysis on malicious Microsoft Word document (.doc)
files themed after Windows 11 Alpha and assess with moderate confidence that these
Word documents were part of a campaign conducted by the threat group FIN7. The group’s
goal appears to have been to deliver a variation of a JavaScript backdoor used by FIN7
since at least 2018.

FIN7

FIN7 is an Eastern European threat group that has been active since at least mid-2015.
They primarily target United States (US)-based companies across various industries but
also operate on a global scale. The group is one of the world’s most notorious cybercrime

[1]

3/20

groups and has been credited with the theft of over 15 million payment card records that
cost organizations around the world approximately one billion dollars (USD) in losses. In
the US alone, the group has targeted over 100 companies and compromised the networks
of organizations in 47 states and the District of Columbia. While FIN7’s primary objective
is to directly steal financial information, such as credit and debit card data, they will also
steal sensitive information to sell on underground marketplaces.

There has been a concerted attempt by law enforcement to tackle the group, including the
arrest of three members arrested August 2018 and a high-level organizer in April 2021.
Despite these personnel losses and media attention, the group has continued a steady
stream of documented activity since at least 2015.

In early 2021, FIN7 was identified as gaining illicit access to a law firm’s network by using a
fake legal complaint themed around Brown-Forman Inc., the parent company of Jack
Daniels whiskey.

Related Groups

FIN7 is closely associated with the threat group referred to as “Carbanak,” with the two
groups sharing a significant number of TTPs including the use of the Carbanak backdoor.
As such, news media and some intelligence vendors use the names interchangeably. To
add to the confusion, different vendors will use their own naming conventions for each
group that include:

FIN7 - Carbon Spider (Crowdstrike), Gold Niagara (Secureworks), Calcium (Symantec)

Carbanak - Carbon Spider (Crowdstrike), Anunak (Group-IB)

Trend Micro released a report in April 2021 outlining the differences in TTPs between the
two groups and MITRE also track the two groups separately. For clarity, we will treat FIN7
and Carbanak as separate groups; the main distinction being FIN7 focuses on hospitality
and retail sectors, while Carbanak targets banking institutions.

Technical Analysis

Word Document

MD5 d60b6a8310373c9b84e6760c24185535

File name Users-Progress-072021-1.doc

The infection chain began with a Microsoft Word document (.doc) containing a decoy image
claiming to have been made with Windows 11 Alpha. The image asks the user to Enable
Editing and Enable Content to begin the next stage of activity, as shown in Figure 1 below.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

4/20

Figure 1 – Windows 11-Themed Maldoc

Analyzing the file, we can see a VBA macro populated with junk data as comments, shown
in Figure 2. Once the content/editing has been enabled, the macro is executed.

5/20

Figure 2 – VBA Macro with Junk Data

Junk data is a common tactic used by threat actors to impede analysis. Once we remove
this junk data, we are left with a VBA macro, as shown in Figure 3 below.

Figure 3 – VBA Macro without Junk Data

The VBScript will take encoded values from a hidden table inside the .doc file, shown in
Figure 4.

6/20

Figure 4 – Values and Key from Hidden Table

The values are deciphered with the function shown in Figure 5.

Figure 5 – Decoding Function in VBScript

The values from the table are deobfuscated using an XOR cipher. In this sample, the key is
“uPHdq3MxjOCfnXB.”

7/20

Figure 6 – VBA Decoding Function Ported into Python

After deobfuscating the VBA macro, using the script shown in Figure 6, we can see what is
occurring in the code.

Figure 7 – Checks Carried Out

Shown in Table 1 are the language checks carried out.

Table 1 – Language checks

8/20

Code LanguageCode Language

1049 Russian

1058 Ukrainian

2073 Russian-Moldova

1070 Sorbian

1051 Slovak

1060 Slovenian

1061 Estonian

3098 Serbian

2074 Serbian (Latin)

If these languages are detected, the function me2XKr is called which deletes the table and
stops running.

Figure 8 – VM Checks

The script checks for Virtual Machines, as shown in Figure 8, and if detected it stops
running.

Figure 9 – Domain Check

9/20

Shown in Figure 9, the script checks for the domain CLEARMIND, which appears to refer to
the domain of a Point-of-Sale (POS) service provider.

The checks include:

Domain name, specifically CLEARMIND (Figure 9)
Language, if any of the languages listed in Table 1
Reg Key Language Preference for Russian
Virtual machine - VMWare, VirtualBox, innotek, QEMU, Oracle, Hyper and Parallels, if
a VM is detected the script is killed (Figure 8)
Memory Available, if there is less than 4GB then don’t proceed
Check for RootDSE via LDAP

If the checks are satisfactory, the script proceeds to the function where a JavaScript file
called word_data.js is dropped to the TEMP folder. However, if the language and VM
checks are detected, the table deletes itself and does not proceed to the JavaScript
payload. This JavaScript file is also full of junk data, as shown in Figure 10 below.

10/20

Figure 10 – JavaScript File (word_data.js) with Junk Data

Once again, we removed the junk data to analyze the JavaScript, which we can see
contains obfuscated strings, shown in Figure 11.

11/20

Figure 11 – Example JavaScript Function without Junk Data

The JavaScript file also contains a deobfuscation function which is shown in Figure 12
below.

12/20

Figure 12 – JavaScript Snippet Containing the XOR Function

Analyzing the XOR cipher function, ‘ben9qtdx4t’ is the key used to decrypt the strings in the
JavaScript file (word_data.js). The obfuscation is carried out using a substitution cipher that
goes from A through K, displayed in Table 2 below.

Table 2 – Substitution Cipher

Key A B C D E F G H I J K

Code 0 1 2 3 4 5 6 7 8 9 ,

13/20

Figure 13 – Deobfuscated Strings

After replacing the obfuscated values with the deobfuscated strings, the Javascript
backdoor appears to have similar functionality with other backdoors reportedly used by
FIN7.

Figure 14 – First Connection

A connection is first made to ‘tnskvggujjqfcskwk.com,’ (Figure 14) and based on the
response, a connection is then made to ‘bypassociation[.]com.’ This address is created by
picking values from each array (Figure 15) at random.

Figure 15 – Path and Arrays

After connecting to the bypassociation[.]com address, the script checks for an active IP to
retrieve the MAC address and DNSHostName (Figure 16), which are then submitted via a
POST request to the bypassociation address.

[9]

14/20

Figure 16 – eq5w0 = xgq86 + z897r8d, aka the MAC address and DNSHostName are
appended to the data sent

Based on the response, further Javascript is executed, as shown in Figure 17.

Figure 17 – Javascript Execution

Attribution

Targeting of a POS provider aligns with previous FIN7 activity
The use of decoy doc files with VBA macros also aligns with previous FIN7 activity
FIN7 have used Javascript backdoors historically
Infection stops after detecting Russian, Ukrainian, or several other Eastern European
languages
Password protected document
Tool mark from Javascript file
"group=doc700&rt=0&secret=7Gjuyf39Tut383w&time=120000&uid=" follows similar
pattern to previous FIN7 campaigns

15/20

The specified targeting of the Clearmind domain fits well with FIN7’s preferred modus
operandi. As a California-based provider of POS technology for the retail and hospitality
sector, a successful infection would allow the group to obtain payment card data and later
sell the information on online marketplaces. The US Department of Justice calculates that
as of 2018 FIN7 was responsible for stealing over 15 million card records from 6,500 POS
terminals.

The use of a JavaScript backdoor is also primarily associated with FIN7 and is a common
feature within its campaigns. It is worth noting that Carbanak has also been known to use
Javascript payloads but, as this targets retail and health POS systems, it aligns with FIN7
activity.

While not providing solid attribution, the language check function and table it scores against
indicate a likely geographic location for the creator of this malicious doc file. It is accepted
as an almost unofficial policy that cybercriminals based in the Commonwealth of
Independent States (CIS) are generally left alone, provided they do not target interests or
individuals within their respective borders, ergo the VBA macro checking the target system
language against a list including common CIS languages which will terminate the infection if
found to match. The addition of Sorbian, a minority German Slavic language, Estonian,
Slovenian and Slovak are unusual additions as these would not be languages considered
for exclusion but would be considered ‘fair game.’ It is worth noting that REvil ransomware
also includes these languages in their exclusion tables, a group that is believed to work with
FIN7.

Conclusion

FIN7 is one of the most notorious financially motivated groups due to the large amounts of
sensitive data they have stolen through numerous techniques and attack surfaces. Things
have been turbulent for the threat group over the past few years as with success and
notoriety comes the ever-watchful eye of the authorities. Despite high-profile arrests and
sentencing, including alleged higher-ranking members, the group continues to be as active
as ever. US prosecutors believe the group numbers around 70 individuals, meaning the
group can likely accommodate these losses as other individuals will step in. Targeting
infrastructure appears to be a more successful method of stopping or delaying these actors.

Endnotes

 Kremez, Vitali. 2018. Let's Learn: In-Depth Review of FIN7 VBA Macro & Lightweight
JavaScript Backdoor. November 28. Accessed 8 18, 2021.
https://www.vkremez.com/2018/11/in-depth-review-of-fin7-vba-macro.html.

 ESentire. 2021. Notorious Cybercrime Gang, FIN7, Lands Malware in Law Firm Using
Fake Legal Complaint Against Jack Daniels’ Owner, Brown-Forman Inc. July 21. Accessed
August 17, 2019. https://www.esentire.com/security-advisories/notorious-cybercrime-gang-

[10]

[11]

[12]

[13]

[14]

[1]

[2]

16/20

fin7-lands-malware-in-law-firm-using-fake-legal-complaint-against-jack-daniels-owner-
brown-forman-inc.

 Department of Justice. 2018. Three Members of Notorious International Cybercrime
Group “Fin7” In Custody for Role in Attacking Over 100 U.S. companies. August 1.
Accessed August 19, 2019. https://www.justice.gov/opa/pr/three-members-notorious-
international-cybercrime-group-fin7-custody-role-attacking-over-100.

 Ibid; Department of Justice. 2021. High-level organizer of notorious hacking group FIN7
sentenced to ten years in prison for a scheme that compromised tens of millions of debit
and credit cards . April 16. Accessed August 17, 2021. https://www.justice.gov/usao-
wdwa/pr/high-level-organizer-notorious-hacking-group-fin7-sentenced-ten-years-prison-
scheme.

 Carr, Goody, Miller and Vengerik, On the Hunt.

 ESentire, Notorious Cybercrime Gang.

 Carr, Goody, Miller and Vengerik, On the Hunt.

 Trend Micro. 2021. Carbanak and FIN7 Attack Techniques. April 20. Accessed August
17, 2021. https://www.trendmicro.com/en_gb/research/21/d/carbanak-and-fin7-attack-
techniques.html.

 SentinelOne. 2019. Deep Insight into “FIN7” Malware Chain: From Office Macro Malware
to Lightweight JS Loader. October 3. Accessed August 19, 2021.
https://labs.sentinelone.com/fin7-malware-chain-from-office-macro-malware-to-lightweight-
js-loader/.

 Department of Justice, Three Members.

 Kaspersky. 2019. FIN7.5: the infamous cybercrime rig “FIN7” continues its activities.
May 8. Accessed August 17, 2021. https://securelist.com/fin7-5-the-infamous-cybercrime-
rig-fin7-continues-its-activities/90703/.

 Counter Threat Unit Research Team. 2019. REvil/Sodinokibi Ransomware. September
24. Accessed August 24, 2021. https://www.secureworks.com/research/revil-sodinokibi-
ransomware; Singleton, Camille, Christopher Kiefer, and Ole Villadsen. 2020. Ransomware
2020: Attack Trends Affecting Organizations Worldwide. September 28. Accessed August
24, 2021. https://securityintelligence.com/posts/ransomware-2020-attack-trends-new-
techniques-affecting-organizations-worldwide/.

 Department of Justice, High-level organizer.

 Ibid.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

17/20

IOCs

Filename Hash

Clients-Current_state-062021-0.doc dc7c07bac0ce9d431f51e2620da93398

Clients-Progress-072021-7.doc d17f58c6c9771e03342cdd33eb32e084

Clients-State-072021-4.doc ad4a6a0ddeacdf0fc74c3b45b57a1316

Customers-State-072021-3.doc de14cf1e58d288187680f5938e2250df

Clients-State-072021-4.doc ad4a6a0ddeacdf0fc74c3b45b57a1316

Users-Progress-072021-1.doc d60b6a8310373c9b84e6760c24185535

Users-Progress-072021-1.lnk 72149bbd364326618df00dc6b0e0b4c4

word_data.bin/word_data.js 0d12e8754adacc645a981426e69b91ec

word_data.bin/word_data.js 8f5302dafa90958117cbee992a0e09a9

word_data.bin/word_data.js f4c77f40e325a420be4660370a97158c

word_data.bin/word_data.js ce80bf89bbc800547039844d400ab27c

word_data.bin/word_data.js 41c48b16a01f0322b4e851aa4e1c4e0e

IP Address

85.14.253.178

Domains

tnskvggujjqfcskwk[.]com
 https://bypassociation[.]com

 https://bypassociation[.]com/images/sync?type=name
 https://bypassociation[.]com/new?type=name

 https://bypassociation[.]com/pictures/hide?type=name
 https://bypassociation[.]com/pictures/show?type=name
 https://bypassociation[.]com/images/hide?type=name

 https://bypassociation[.]com/img/hide?type=name
 https://bypassociation[.]com/img/add?type=name
 https://bypassociation[.]com/images/add?type=name

 https://bypassociation[.]com/info/hide?type=name

MITRE ATT&CK

18/20

Technique ID Name

Execution T1059.005 Command and Scripting Interpreter: Visual Basic

 T1059.007 Command and Scripting Interpreter: Javascript

 T1204.002 User Execution: Malicious File

 T1047 Windows Management Instrument

Defense Evasion T1140 Deobfuscate/Decode Files or Information

 T1027 Obfuscated Files or Information

 T1497 Virtualization/Sandbox Evasion

 T1497.001 Virtualization/Sandbox: System Checks

Discovery T1087.002 Account Discovery: Domain Account

Appendix

Script for deobfuscating VBA:

def fin_decode(list, keyS):

 keyOrd = [ord(l)for l in keyS]
 final_list = []
 count = 0

 for num in list:
 key_2 = keyOrd[count % len(keyS)]
 count += 1
 final_list.append(str(num - key_2))
 finalList = ' '.join(final_list)

 for n in range(0, len(final_list)):
 final_list[n] = int(final_list[n])
 let = chr(final_list[n])
 print(let, end='')

Script for deobfuscating the Javascript files:

19/20

def xor(data, key):

 dict = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8,
'J': 9, 'K': ","}

 length = len(key)
 dictD = [dict[d] for d in data]
 values = "".join(str(x) for x in dictD)
 values = values.strip(',')
 values = values.split(',')
 d = [int(k) for k in values]
 key_ord = [ord(m) for m in key]

 decode = ""
 count = 0

 for i in d:
 decode += chr(i ^ key_ord[count % length])
 count += 1
 print(decode)

20/20

Topics: Research

https://www.anomali.com/blog/category/research

