
1/20

muzi September 2, 2021

Cross-Platform Java Dropper: Snake and XLoader (Mac
Version)

malwarebookreports.com/cross-platform-java-dropper-snake-and-xloader-mac-version/

According to netmarketshare, Windows still owns about 87% of the market versus about 9%
for Mac OS. Although Windows will likely stay the predominant leader of the pack, Mac OS
continues to grow year over year, both in consumer and commercial markets. Likewise,
malware for Windows is also by far the most common, but malware for Mac OS is gaining
popularity.

A few weeks ago, a sample came across that was interesting – a Java dropper that had
support for both Windows and Mac OS. Depending on the operating system, the dropper
would decrypt one of the two encrypted pieces of malware stored as a resource and run it.
Cross platform malware, using languages such as Java or Golang, is relatively uncommon,
but continues to gain popularity as the consumer and commercial markets diversify between
Windows and Mac.

Java Dropper

Filename: Statement SKBMT 09818.jar
MD5: 3f471e4079fe67cbc77f5705975d26fd
SHA1:7f55519e3fc02feace1e4bc55d984eef6eb24353
SHA256: 151d3313216b97f76fec2c0450d26de34aeb0c6817365fe3484a532b4443ed4a

This Java Dropper was received via a phishing email attachment. Zipdump provided a
preview of the contents of the JAR file:

Figure 1: Java Dropper Contents
The preview from zipdump details the contents inside the JAR file, namely:

2 Class files

https://malwarebookreports.com/cross-platform-java-dropper-snake-and-xloader-mac-version/
https://netmarketshare.com/operating-system-market-share.aspx
https://github.com/DidierStevens/DidierStevensSuite/blob/master/zipdump.py

2/20

3 Resources

The MANIFEST.MF file provided the main class and starting point for the JAR file,
OBSrz.class.

Figure 2: MANIFEST.MF File Contents
JAR files/Java Class files can be analyzed using a Java Decompiler, such as JD Project,
Procyon and CFR.

oBSrz.Class

Once decompiled using CFR, OBSrz is straightforward to read as there is no obfuscation
hampering analysis.

Figure 3: OBSrz.class (main) Decompiled
First, the dropper checks for the operating system via the GetOS function to determine which
encrypted resource to decrypt.

http://java-decompiler.github.io/
https://github.com/ststeiger/procyon
https://www.benf.org/other/cfr/

3/20

Figure 4: GetOS Function
Next, the dropper gets the filename based on the operating system identified from GetOS.

Figure 5: Get_Crypted_Filename (mach_o vs exe)
Finally, once the OS has been determined and the correct filename has been chosen, the
dropper writes the file to disk and executes it (if Mac OS, it also changes the permissions to
RWX first). Once the process is running, it will finally overwrite the file with a .ico file and
display it.

Resource Decryption

4/20

The three resources are encrypted using AES. The decryption function is quite simple. It
takes the first 16 bytes of a SHA1 hashed string as the key and decrypts using AES-128
(ECB). A quick Python script can be used to decrypt the resources. Once decrypted, the
following files become evident:

NVFFY: MS Windows icon resource – 1 icon, 32×32, 32 bits/pixel
fI4sWHk: PE32 executable (GUI) Intel 80386 Mono/.Net assembly, for MS Windows
kIbwf02ld: Mach-O 64-bit executable x86_64

Snake Keylogger

The malware decrypted and executed if the dropper is run on a Windows machine is Snake
Keylogger (aka 404 Keylogger), a subscription based .NET keylogger with many capabilities.
The infostealer can steal sensitive information, log keyboard strokes, take screenshots and
extract information from the system clipboard.

The Snake sample analyzed in this post was packed to avoid detection by EDR and AV
products. The packer starts by decoding a .NET resource using
ColorTranslator.ToWin32 into a DLL and loading it with System.Reflection.Assembly
Load .

Figure 1: Decode Resource with ColorTranslator.ToWin32 and Load Assembly in Array

https://github.com/MuziSec/malware_analysis_scripts/blob/main/jar_dropper_payload_extractor.py
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.colortranslator.towin32?view=net-5.0

5/20

Figure 2: Decoded DLL Loaded with System.Reflection.Assembly Load
The decoded DLL is packed with something Hatching calls the “CustAttr .NET packer.” The
DLL has a number of different decoding routines, which ultimately decode another another
DLL (hreWg xR太太D.dll), which is then loaded.

Figure 3: One of Several Decoding Routines in the CustAttr .NET Packed DLL
hreWg xR太太D.dll, similar to the previous DLL, performs a number of decoding routines to
decode the packed code inside of it. This time, rather than using
System.Reflection.Assembly Load to load the next unpacked executable, it opts for a

process injection technique called Process Hollowing. It uses the following API calls to
inject/execute the final payload:

CreateProcess
UnmapViewOfSection
VirtualAlloc
ReadProcessMemory
WriteProcessMemory
VirtualProtect
GetThreadContext
SetThreadContext
ResumeThread

https://hatching.io/
https://attack.mitre.org/techniques/T1055/012/

6/20

7/20

Figure 4: Process Hollowing API Calls from hreWg xR太太D.dll
Due to an error in dnSpy which caused variables not to show , the injected executable was
dumped via PE-sieve.

Figure 5: dnSpy Error

Figure 6: PE-sieve Dumping Injected Exe
The dumped executable is named 0DFFENDR.exe. When opened in dnSpy, it is obvious
that this executable is heavily obfuscated. de4dot identified the following obfuscators:

ConfuserEx / Beds Protector
Babel .NET

https://github.com/hasherezade/pe-sieve
https://github.com/de4dot/de4dot

8/20

Figure 7:

9/20

0DFFENDR.exe Obfuscation dnSpy
With the 0DFFENDR.exe being heavily obfuscated, it can be easier to clean up the
obfuscation by first executing the original executable, then using Megadumper to dump out
the process that was injected by hreWg xR太太D.dll. Once 0DFFENDR.exe is dumped,
de4dot will clean up the malware significantly, making the malware family apparent.

Figure 8: Snake Keylogger Identified
As reported by HP’s Threat Research Team, Snake sometimes copies itself to the start-up
folder as part of the unpacking process. The sample analyzed in this post did not do so, but
did make a registry entry to run on startup.

Figure 9: Snake Keylogger AddToStartup Function
Snake comes fully featured with a number of infostealing modules supporting a wide variety
of applications (Browsers, Email Clients, Chat Applications, etc) including:

360_China
360_English
7Star
Amigo
Avast
BlackHawk
Blisk
Brave
Cent
Chedot
Chrome
Chrome_Canary
Chromium
Citrio
CocCoc

https://github.com/CodeCracker-Tools/MegaDumper
https://github.com/de4dot/de4dot
https://threatresearch.ext.hp.com/the-many-skins-of-snake-keylogger/

10/20

Comodo
CoolNovo
Coowon
Cyberfox
Discord
Elements

Epic
Falkon
FileZilla
Firefox
Foxmail
Ghost
IceCat
IceDragon
IPSurf
Iridium
Iron
Kinzaa
Kometa
Liebao
Microsoft
Nichrome
Opera
orbitum
Outlook
PaleMoon
Pidgin

PostBox
QQ
SalamWeb
SeaMonkey
Sleipnir
Slim
Slimjet
Sputnik
Superbird
TheWiFi_Orginal
Thunderbird
Torch
UC
Uran

11/20

Vivaldi
WaterFox
WindowsProductKey_Orginal
Xpom
xVast
Yandex

XLoader (Mac Variant)

According to Checkpoint Research, Formbook malware has been around for 5 years already.
In 2020, XLoader was developed as a successor of Formbook, sharing codebase and
capabilities but also supporting Mac. XLoader is an infostealer that harvests credentials from
various web browsers and applications, collects screenshots, logs keystrokes and can
download and execute files.

Filename: kIbwf02ld
MD5: 997af06dda7a3c6d1be2f8cac866c78c
SHA1: fb83d869f476e390277aab16b05aa7f3adc0e841
SHA256: 46adfe4740a126455c1a022e835de74f7e3cf59246ca66aa4e878bf52e11645d

The XLoader Mach-O, similar to the Windows version, is stripped and obfuscates its data;
running strings returns no results.

Static Analysis

Sentinel One has three blog posts detailing analysis tips and tricks for Mach-O binaries.
These static analysis methods were used to analyze XLoader and get a basic idea of the
intents and capabilities of the malware.

First, nm -m was used to display Mach-O segment and section names in alphabetical order.
Unfortunately, this returns little information as the binary is stripped and functions are
encrypted, then resolved with dlsym().

Figure 10: nm -m output showing Mach-O segment and section names
Next, otool was used to extract both libs and methods from XLoader. This information can
be extremely useful as it can identify great places to set breakpoints for debugging.
Unfortunately, the XLoader binary once again provides little context.

Figure 11: otool -L outputs only dylib

https://research.checkpoint.com/2021/top-prevalent-malware-with-a-thousand-campaigns-migrates-to-macos/
https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-one/

12/20

Figure 12: otool -oV Outputs Only the `Main Method
The final piece of static analysis is extracting stack strings. This can be done a variety of
ways, using tool such as Floss, manually extracting with otool, etc.

https://www.sentinelone.com/blog/detecting-xloader-a-macos-malware-as-a-service-info-stealer-and-keylogger/

13/20

Figure 13: Example Stack String Within XLoader

Figure 14: Extracting Stack Strings via otool
Finally, using a tool that extracts hidden strings, even more information can be extracted,
which provides more hints at the capabilities of the malware.

14/20

Figure 15: Strings Extracted

Using Hidden Strings Tool (Custom tool, Floss provides similar output)

15/20

Based on the output of our stack/hidden string extraction, it is clear that XLoader is focused
on stealing Chrome and Firefox passwords, contents from the clipboard, keystrokes
(usernames and passwords from other applications), etc.

Dynamic Analysis

Executing the sample in a sandbox reveals the hidden app’s Info.plist as well as initial
network communications. Unfortunately the dynamic analysis was performed after
infrastructure was taken down, so there was not very much additional information uncovered.

Figure 16: Hidden App’s Info.plist

16/20

Figure 17: XLoader Initial Network Traffic

Detection

JAR Resource Unpacker/Decryptor (Auto Extract both the encrypted exe and Mach-O
binary)

Snake Keylogger Yara Rule

https://github.com/MuziSec/Snake_XLoader_JAR_Resource_Decryptor/blob/main/README.md
https://github.com/MuziSec/yara/blob/main/Snake_Keylogger.yar

17/20

rule Snake_Keylogger {

 meta:
 author = "muzi"
 date = "2021-08-20"
 description = "Detects Snake Keylogger (unpacked)"
 hashes = "96a6df07b7d331cd6fb9f97e7d3f2162e56f03b7f2b7cdad58193ac1d778e025"

 strings:
 $s1 = "TheSMTPEmail" ascii wide nocase
 $s2 = "TheSMTPPSWD" ascii wide nocase
 $s3 = "TheSMTPServer" ascii wide nocase
 $s4 = "TheSMTPReciver" ascii wide nocase
 $s5 = "TheFTPUsername" ascii wide nocase
 $s6 = "TheFTPPSWD" ascii wide nocase
 $s7 = "TheTelegramToken" ascii wide nocase
 $s8 = "TheTelegramID" ascii wide nocase
 $s9 = "loccle" ascii wide nocase
 $s10 = "get_KPPlogS" ascii wide nocase
 $s11 = "get_Scrlogtimerrr" ascii wide nocase
 $s12 = "UploadsKeyboardHere" ascii wide nocase
 $s13 = "get_ProHfutimer" ascii wide nocase
 $s14 = "Chrome_Killer" ascii wide nocase
 $s15 = "PWUploader" ascii wide nocase
 $s16 = "TelSender" ascii wide nocase
 $s17 = "RamSizePC" ascii wide nocase
 $s18 = "ClipboardSender" ascii wide nocase
 $s19 = "ScreenshotSender" ascii wide nocase
 $s20 = "StartKeylogger" ascii wide nocase
 $s21 = "TheStoragePWSenderTimer" ascii wide nocase
 $s22 = "TheStoragePWSender" ascii wide nocase
 $s23 = "TheHardDiskSpace2" ascii wide nocase
 $s24 = "registryValueKind_0" ascii wide nocase
 $s25 = "KeyLoggerEventArgsEventHandler" ascii wide nocase
 $s26 = "decryptOutlookPassword" ascii wide nocase
 $s27 = "TheWiFisOutput" ascii wide nocase
 $s28 = "wifipassword_single" ascii wide nocase
 $s29 = "WindowsProductKey_Orginal" ascii wide nocase
 $s30 = "TheWiFi_Orginal" ascii wide nocase
 $s31 = "OiCuntJollyGoodDayYeHavin" ascii wide nocase
 $s32 = "de4fuckyou" ascii wide nocase

 condition:
 uint16be(0) == 0x4D5A and
 8 of ($s*)
}

CustAttr Packer Yara Rule

https://github.com/MuziSec/yara/blob/main/CustAttr_Packer.yar

18/20

rule CustAttr_Packer {

 meta:
 author = "muzi"
 date = "2021-08-20"
 description = "Detects CustAttr/CutsAttr, a common .NET packer/crypter."

 strings:
 $s1 = "mscoree.dll" ascii wide nocase
 $x1 = "CutsAttr" ascii wide nocase
 $x2 = "SelectorX" ascii wide nocase
 $x3 = "CustAttr" ascii wide nocase
 condition:
 uint16be(0) == 0x4D5A and
 $s1 and
 1 of ($x*)
}

XLoader MacOS Yara Rule

https://github.com/MuziSec/yara/blob/main/XLoader_MacOS.yar

19/20

rule XLoader_MacOS {

 meta:
 author = "muzi"
 date = "2021-08-20"
 description = "Detects XLoader for macOS"

 strings:
 /*
 100001bf8 48 8b 93 MOV RDX ,qword ptr [RBX + 0x8b8]
lib
 b8 08 00
 00
 100001bff 48 8d b3 LEA RSI ,[RBX + 0x9d0]
target
 d0 09 00
 00
 100001c06 b9 02 00 MOV ECX ,0x2
cfg_buffer_id
 00 00
 100001c0b 41 b8 1a MOV R8D ,0x1a
func_num
 00 00 00
 100001c11 48 89 df MOV RDI ,RBX
xl
 100001c14 e8 57 f3 CALL ab_dlsym_get_func
pthread_create
 ff ff
 100001c19 84 c0 TEST AL ,AL
 100001c1b 0f 84 64 JZ LAB_100001d85
 01 00 00
 100001c21 48 8b 93 MOV RDX ,qword ptr [RBX + 0x8b8]
lib
 b8 08 00
 00
 100001c28 48 8d b3 LEA RSI ,[RBX + 0x918]
target
 18 09 00
 00
 100001c2f b9 02 00 MOV ECX ,0x2
cfg_buf_id
 00 00
 100001c34 45 31 c0 XOR R8D ,R8D
func_num
 100001c37 48 89 df MOV RDI ,RBX
xl
 100001c3a e8 31 f3 CALL ab_dlsym_get_func
exit
 ff ff

 */
 $dlsym_resolve_thread_create = {
 (48|49|4c|4d) (8b|8d) ?? ?? ?? 00 00 [0-16] // MOV
RDX, qword ptr [RBX + 0xb8]
 (48|49|4c|4d) 8d ?? ?? ?? 00 00 [0-16] // LEA

20/20

RSI, [RBX + 0x9d0]
 (B8|B9|BA|BB|BD|BE|BF) 02 00 00 00 [0-16] // MOV
ECX, 0x2
 (40|41|42|43|44|45|46|47) ?? 1a 00 00 00 [0-16] // MOV
R8D, 0x1a
 (48|49|4c|4d) 8? ?? [0-16] // MOV
RDI, RBX
 (E8|FF) ?? ?? ?? ?? // Call
func
 }
 $dlsym_resolve_exit = {
 (48|49|4c|4d) (8b|8d) ?? ?? ?? 00 00 [0-16] // MOV
RDX, qword ptr [RBX + 0xb8]
 (48|49|4c|4d) 8d ?? ?? ?? 00 00 [0-16] // LEA
RSI, [RBX + 0x918
 (B8|B9|BA|BB|BD|BE|BF) 02 00 00 00 [0-32] // MOV
ECX, 0x2
 // XOR
R8D, R8D (Could be xor, could be mov, etc.)
 (48|49|4c|4d) 8? ?? [0-16] // MOV
RDI, RBX
 (E8|FF) ?? ?? ?? ?? // Call
func
 }

 condition:
 uint32be(0) == 0xCFFAEDFE and all of ($dlsym_*)
}

keylogger malware snake xloader

https://malwarebookreports.com/tag/keylogger/
https://malwarebookreports.com/tag/malware/
https://malwarebookreports.com/tag/snake/
https://malwarebookreports.com/tag/xloader/

